Published Aug 10, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Maribeb Castro González

Mauricio Edilberto Pacheco Montealegre

Mariana Restrepo Benavides

##plugins.themes.bootstrap3.article.details##

Abstract

Urban wetlands are biodiversity reservoirs sustained by microbe-mediated processes. In tropical zones, wetland microbial dynamics remain poorly understood. Chemical parameters, heavy metal content, and microbiological community structure were investigated in surface sediments of the Santa Maria del Lago (SML) wetland in Bogota, Colombia. High-throughput sequencing was employed to generate RNAr 16S and nosZ gene sequence data with which bacteria, archaea, and nosZ-type denitrifier community composition and their phylogenetic relationships were investigated. A canonical correspondence analysis was conducted to determine the relationship between assessed environmental variables and microbial community composition. Results showed that the most abundant bacterial phyla were Proteobacteria, Acidobacteria (group GP18), and Aminicenantes; Archaea were represented by the taxa Methanomicrobia and Thermoprotei, and the nosZ community was dominated by Candidatus Competibacter denitrificans. A phylogenetic analysis revealed a high diversity of Operational Taxonomic Units (OTUs), according to 16S rRNA gene sequence data; however, the quantity and diversity of OTUs from the nosZ community were low compared to previous studies. High concentrations of ammonium, phosphorus, organic carbon, Pb, Fe, Zn, Cu, and Cd, were detected in sediments, but they were not strongly related to observed microbial community compositions. In conclusion, in the same polluted SML wetland sediments diverse bacteria and archaea communities were detected, although not nosZ-type denitrifiers.

Keywords

metataxonomic, nosZ gene, pollution, urban wetlands

References
[1] Sánchez O. Constructed wetlands revisited: microbial diversity in the omics era, Microbial Ecology, 73: 722–733, 2017.
doi: 10.1007/S00248-016-0881-y

[2] Zhi E, Song Y, Duan L, Yu H and Peng J. Spatial distribution and diversity of microbial community in large-scale constructed wetland of the Liao River Conservation Area, Environmental Earth Science, 73(9): 5085–5094, 2015.
doi: 10.1007/s12665-015-4021-7

[3] Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK and Stein O. Microbial processes influencing performance of treatment wetlands: a review, Ecological Engineering, 35(6): 987–1004, 2009.
doi: 10.1016/j.ecoleng.2008.12.030

[4] Liikainen A, Martikainen PJ. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interfaces in a eutrophic lake, Chemosphere, 52: 1287–1293, 2003.
doi: 10.1016/s0045-6535(03)00224-8

[5] Stadmark J, Leonardson L. Emissions of greenhouse gasses from ponds constructed for nitrogen removal, Ecological Engineering, 25: 542–551, 2005.
doi: 10.1016/j.ecoleng.2005.07.004

[6] Wang W, Liu W, Wu D, Wang X, Zhu G. Differentiation of nitrogen and microbial community in the littoral and limnetic sediments of a large shallow eutrophic lake (Chaohu Lake, China), Journal of Soils and Sediments, 19: 1005–1016, 2019.
doi: 10.1007/s11368-018-2090-4

[7] Betancourt JM, Parra JP, Villamil C. Emisión de metano y óxido nitroso de los sedimentos del manglar de la Ciénaga Grande de Santa Marta, Caribe colombiano, Boletín de Investigaciones Marinas y Costeras, 42(1): 131–152, 2013.
doi: 10.25268/bimc.invemar.2013.42.1.64

[8] Canchala T. Generación de gases de efecto invernadero en los sedimentos de un humedal natural eutrofizado: influencia de nutrientes (N y P). Trabajo de grado maestría, Universidad del Valle, Colombia, 2014.
URL: http://hdl.handle.net/10893/7723

[9] Castro-González M, González A. La producción neta de óxido nitroso en un humedal urbano en Colombia está principalmente influenciada por cambios estacionales, Limnetica, 39(2): 693–709, 2020.
doi: 10.23818/limn.39.45

[10] Liu Y, Zhang JX, Zhao L, Zhang XL, Xie SG. Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment, Limnology, 15: 249–256, 2014.
doi: 10.1007/s10201-014-0429-0

[11] Liu Y, Tong T, Li B, Xie S. Dynamics of bacterial communities in a river water treatment wetland, Annals of Microbiology, 69: 637–645, 2019.
doi: 10.1007/s13213-019-01454-x

[12] Huang L, Hu W, Tao J, Liu Y, Kong Z, Wu L. Soil bacterial community structure and extracellular enzyme activities under different land use types in a long-term reclaimed wetland, Journal of Soils and Sediments, 19(5): 2543–2557, 2019.
doi: 10.1007/s11368-019-02262-1

[13] Zhao D, Huang R, Zeng J, Yan W, Wang J, Wang M, Wu QL. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP), World Journal of Microbiology and Biotechnology, 28:
3159–3170, 2012.
doi: 10.1007/s11274-012-1126-y

[14] Iribar A, Hallin S, Sánchez JM, Enwall K, Poulet N, Garabétian F. Potential denitrification rates are spatially linked to colonization patterns of nosZ genotypes in an alluvial wetland, Ecological Engineering, 80: 191–197, 2015.
doi: 10.1016/j.ecoleng.2015.02.002

[15] López R.H. Estado trófico de un humedal urbano andino tropical: Santa María del Lago, Bogotá, D.C. Colombia. Universidad Militar Nueva Granada (Ed). Periódicas S.A.S, 2012.

[16] Pinilla G. An index of limnological conditions for urban wetlands of Bogota city, Colombia. Ecological Indicators. 10: 848–856, 2010.
doi: 10.1016/j.ecolind.2010.01.006

[17] IGAC. Métodos analíticos del laboratorio de suelos. 6th edición. Instituto Geográfico Agustín Codazzi. Colombia, 2006.

[18] Davidson EA, Strand MK, Galloway LF. Evaluation of the most probable number method for enumerating denitrifying bacteria, Soil Science Society American Journal, 49: 642–645, 1985.
doi: 10.2136/sssaj1985.03615995004900030023x

[19] Caporaso JG, Lauber CL, Walters WA, Gerg Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and Miseq platforms, ISME Journal, 6: 1621–1624, 2012.
doi: 10.1038/ismej.2012.8

[20] Kloos K, Mergel A, Rosch C, Bothe H. Denitrification within the genus Azospirillum and other associative bacteria, Australian Journal of Plant Physiology, 28: 991–998, 2001.
doi: 10.1071/PP01071

[21] Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence Data, Bioinformatics, btu170, 2014.
doi: 10.1093/bioinformatics/btu170

[22] Caporaso JG. et al. QIIME allows analysis of high-throughput community sequencing data, Nature Methods, 7: 335–336, 2010.
doi: 10.1038/nmeth.f.303

[23] Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences, Applied and Environmental Microbiology, 78: 717–725, 2012.
doi: 10.1128/aem.06516-11

[24] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA 6: molecular evolutionary genetics analysis version 6.0, Molecular Biology and Evolution, 30: 2725–2729, 2013.
doi: 10.1093/molbev/mst197

[25] Edgar RC. MUSCLE. Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, 32(5): 1792–1797, 2004.
doi: 10.1093/nar/gkh340

[26] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Molecular Biology and Evolution, 35: 1547–1549, 2018.
doi: 10.1093/molbev/msy096

[27] Ter Braak CJF. CANOCO Reference Manual and Cano Draw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5) Ithaca, NY: Microcomputer Power, 2000.

[28] Koretsky CM, Haas JR, Miller D, Ndenga NT. Seasonal variation in pore water and sediment
geochemistry of littoral lake sediments (Asylum Lake, MI, USA), Geochemical Transactions,
7: 11–37, 2006.
doi: 10.1186/1467-4866-7-11

[29] Magalhães CM, Machado A, Matos P, Bordalo A. Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary, FEMS Microbiology and Ecology, 77(2): 274–284, 2011.
doi: 10.1111/j.1574-6941.2011.01107.x

[30] Fan, YY, Li, BB, Yang, ZC, Cheng, YY, Liu F. Abundance and diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater lake, Applied Microbiology and Biotechnology, 102: 10791–10801, 2018.
doi: 10.1007/s00253-018-9443-1

[31] Bañeras LL, Ruiz-Rueda O, López-Flores L, Quintana XD, Hallin S. The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation, International Microbiology, 15: 89–99, 2012.
doi: 10.2436/20.1501.01.162

[32] Magalhães C, Silva J, Teixeira X, Bordalo AA. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Marine Chemistry, 107: 332–341, 2007.
doi: 10.1016/j.marchem.2007.02.005

[33] Long ER, Morgan LG. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. In: NOAA Tech. Memo. NOS OMA 52. US National Oceanic and Atmospheric Administration, Seattle, Washington, 1995.

[34] Vane CH, Harrison I, Kim IAW, Moss-Hayes V, Vickers BP and Long K. Organic and metal contamination in surface mangrove sediments of South China, Marine Pollution Bulletin, 58: 129–166, 2009.
doi: 10.1016/j.marpolbul.2008.09.024

[35] Ruiz-Rueda OS, Hallin S and Bañeras L. Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiology and Ecology, 67: 308–319, 2009.
doi: 10.1111/j.1574-6941.2008.00615.x

[36] Cai J, Bai C, Tang X, Dai J, Gong Y, Hu Y, Shao K, Zhou L, Gao G. Characterization of bacterial and microbial eukaryotic communities associated with an ephemeral hypoxia event in Taihu Lake, a shallow eutrophic Chinese lake, Environmental Science Pollution Research
International, 25(31): 31543–31557, 2018.
doi: 10.1007/s11356-018-2987-x

[37] Zimmermann J, Portillo MC, Serrano L, Ludwig W and González JM. Acidobacteria in freshwater ponds at Donana National Park. Spain, Microbial Ecology, 63(4): 844–855, 2012.
doi: 10.1007/s00248-011-9988-3

[38] Hartman WH, Richardson CJ, Vilgalys E and Bruland GL. Environmental and anthropogenic controls over bacterial communities in wetland soils, Proceedings of Natural Academy of Sciences USA, 105(46): 17842–17847, 2008.
doi: 10.1073%2Fpnas.0808254105

[39] Li X, Menga D, Li J, Yin H, Liu H, Liu X, Cheng CH, Xiao Y, Liu Z, Ya M. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination, Environmental Pollution, 231: 908–917, 2017.
doi: 10.1016/j.envpol.2017.08.057

[40] De Chaves MG, Silva GGZ, Rossetto R, Edwards RA, Tsai SM, Navarrete AA. Acidobacteria Subgroups and Their Metabolic Potential for Carbon Degradation in Sugarcane Soil Amended with Vinasse and Nitrogen Fertilizers, Frontiers in Microbiology, 10: 1680, 2019.
doi: 10.3389/fmicb.2019.01680

[41] Kielak AM, Barreto CC, Kowalchuk GA, Van Veen JA, Kuramae EE. The ecology of Acidobacteria: moving beyond genes and genomes, Frontiers in Microbiology, 7: 704, 2016.
doi: 10.3389/fmicb.2016.00744

[42] Kadnikov V, Mardanov V, Beletsky A, Karnachuk O, Ravin N. Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle, Extremophiles, 23, 2019.
doi: 10.1007/s00792-018-01073-5

[43] Farag IF, Davis JP, Youssef NH, Elshahed MS. Global Patterns of Abundance, Diversity and Community Structure of the Aminicenantes (Candidate Phylum OP8), PLoS One, 9(3): e92139, 2014.
doi: 10.1371/journal.pone.0092139

[44] Legg TM, Zheng Y, Simone B, Radloff KA, Mladenov N, et. al. Carbon, metals, and grain size correlate with bacterial community structure in sediments of a high arsenic aquifer, Frontiers in Microbiology, 3(82): 1-15, 2012.
doi: 10.3389/fmicb.2012.00082

[45] Li D, Jiang X, Wang J, Wang K, Zheng B. Effect of Sewage and Industrial Effluents on Bacterial and Archaeal Communities of Creek Sediments in the Taihu Basin, Water, 9: 373, 2017.
doi: 10.3390/w9060373

[46] Bensaid O, Goñiurriza M, El Bour M, Aissa P, Duran R. Bacterial community structure of superficial sediments of the Bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon, Microbial Ecology, 59(3): 445–56, 2009.
doi: 10.1007/s00248-009-9585-x

[47] Muyzer G, Stams A. The ecology and biotechnology of sulphate-reducing bacteria, Nature Reviews Microbiology, 6: 441–454, 2008.
doi: 10.1038/nrmicro1892

[48] Garcia JL, Ollivier B, Whitman W. The order Methanomicrobiales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K-H., Stackebrandt E. (Eds), The Prokaryotes, 2006. Springer: New York, USA.

[49] Zhang A, Guo CH, Wang CH, Gu J, Wang P, Hui Y, Han B. Detection of methane biogenesis in a shallow urban lake in summer, Journal Soils and Sediments, 14: 1004–1012, 2014.
doi: 10.1007/s11368-014-0858-8

[50] Bialek K, Cysneiros D, O’Flaherty V. Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: Microbial community structure, population dynamics, and kinetics of methanogenic populations, Archaea, ID 346171: 1–10, 2013.
doi: 10.1155/2013/346171

[51] Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, Bräuer S, Yavitt JB, Liu WT, Zinder S, Cadillo-Quiroz H. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments, ISME Journal, 11(1): 87–99,
2017.
doi: 10.1038/ismej.2016.104

[52] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process, Annual Review of Microbiology, 63: 311–334, 2009.
doi: 10.1146/annurev.micro.61.080706.093130

[53] Weber HS, Habicht KS, Thamdrup B. Anaerobic methanotrophic archaea of the ANME-2d Cluster are active in a low-sulfate, iron-rich freshwater sediment, Frontiers in Microbiology, 8: 619, 2017.
doi: 10.3389/fmicb.2017.00619

[54] Yun J, Zhuang G, Ma A, Guo H, Wang Y, Zhang H. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan plateau, Microbial Ecology, 63: 835–843, 2012.
doi: 10.1007/s00248-011-9981-x

[55] Bowman JP. Bergey’s manual of systematics of Archaea and Bacteria. John Wiley & Sons, Inc, 2015.

[56] Peralta AL, Johnston ER, Matthews JW, Kent AD. Abiotic correlates of microbial community structure and nitrogen cycling functions vary within wetlands, Freshwater Science, 35(2): 573–588, 2016.
doi: 10.1086/685688

[57] Mcllroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-Bjerregaard M, Nielsen KL, Nielsen PH. ‘Candidatus Competibacter’ - lineage genomes retrieved from metagenomes reveal functional metabolic diversity, ISME Journal, 8: 613–624, 2014.
doi: 10.1038/ismej.2013.162

[58] Brand VR, Crosby LD, Criddle, CS. Niche differentiation among three closely related Competibacteraceae clades at a full-scale activated sludge wastewater treatment plant and putative linkages to process performance, Applied and Environmental Microbiology, 85: e02301–18, 2019.
doi: 10.1128/AEM.02301-18

[59] Kathiravan V, Krishnani KK. Pseudomonas aeruginosa and Achromobacter sp.: Nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes, World Journal Microbiology and Biotechnology, 30(4): 1187–1198, 2014.
doi: 10.1007/s11274-013-1543-6

[60] Sandaa RA, Torsvik V, Enger O, Daae FL, Castberg T, Hahn D. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution, FEMS Microbiology and Ecology, 30: 237–251, 1999.
doi: 10.1111/j.1574-6941.1999.tb00652.x

[61] Alloway BJ, Jackson AP. The behavior of heavy metals in sewage sludge-amended soil, Science of Total Environment, 100: 151–176, 1991.
doi: 10.1016/0048-9697(91)90377-q
How to Cite
Castro González, M., Pacheco Montealegre, M. E., & Restrepo Benavides, M. (2022). Bacterial communities in sediments of an urban wetland in Bogota, Colombia. Universitas Scientiarum, 27(2), 163–185. https://doi.org/10.11144/Javeriana.SC272.bcis
Section
Microbiología / Microbiology / Microbiologia