Publicado dic 16, 2019



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Karen Sarmiento http://orcid.org/0000-0002-1642-8402

Ariadna Rodríguez https://orcid.org/0000-0001-6636-987X

William Quevedo-Buitrago https://orcid.org/0000-0001-8164-9124

Ivonne Torres https://orcid.org/0000-0003-3829-9565

Carolina Ríos http://orcid.org/0000-0002-1262-1360

Laura Ruíz http://orcid.org/0000-0003-2829-3303

Julian Salazar http://orcid.org/0000-0002-2132-4990

Patricia Hidalgo-Martínez https://orcid.org/0000-0001-5576-9341

Hugo Diez http://orcid.org/0000-0002-3412-5691

##plugins.themes.bootstrap3.article.details##

Resumen

En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos 

Keywords

Keywords: Snake bites, elapid venoms, viperidae, antivenins, serotherapyPalabras clave: Mordedura de serpiente, venenos Elapídicos, Viperidae, Antivenenos, seroterapia.

References
1. Williams D, Gutierrez JM, Harrison R, Warrell DA, White J, Winkel KD, et al. The Global Snake Bite Initiative. Lancet [Internet]. 2010;375:89–91. Available from: https://ac.els-cdn.com/S0140673609611594/1-s2.0-S0140673609611594-main.pdf?_tid=0e0b0610-c3c4-11e7-bb2f-00000aacb360&acdnat=1510063428_1f11546e79daf47fd5f9b0e0eb0b04a1
2. Gutiérrez JM, Williams D, Fan HW, Warrell DA. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon. 2010;56(7):1223–35.
3. Minambiente. Programa nacional para la conservación de serpientes en colombia [Internet]. Corantioqu. Colombia. U nacional de, editor. Bogota; 2013. 1-77 p. Available from: https://www.researchgate.net/publication/259648313
4. León-Nuñez J, Rojas A. Informe Del Evento Accidente Ofídico Hasta El Periodo Epidemiológico XIII Colombia, 2017 [Internet]. Instituto Nacional de Salud- SIVIGILA. 2017. Available from: http://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE OFÍDICO PE XIII 2017.pdf
5. Instituto Nacional de Salud. Protocolo de Vigilancia en Salud Pública. Accidente Ofídico [Internet]. Instituto Nacional de Salud INS. 2014. Available from: http://www.ins.gov.co/lineas-de-accion/Subdireccion-vigilancia/sivigila/Protocolos SIVIGILA/PRO Accidente Ofidico.pdf
6. Instituto Nacional de Salud. Informe del Evento Accidente Ofídico Final Año 2012 [Internet]. Informe Del Evento Accidente Ofídico Final Año 2012. 2012. Available from: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/Informe de Evento Epidemiolgico/ACCIDENTE OFIDICO 2012.pdf
7. Gutierrez J, Leon G, Lomonte B, Angulo Y. Antivenoms for Snakebite Envenomings. Inflamm Allergy - Drug Targets [Internet]. 2011;10(5):369–80. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1871-5281&volume=10&issue=5&spage=369
8. WHO. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. World Heal Organ [Internet]. 2016;204(1):87–91. Available from: http://www.biologie-journal.org/10.1051/jbio/2009043%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/20950580
9. Isbister GK. Antivenom efficacy or effectiveness : The Australian experience. Toxicology. 2010;268:148–54.
10. Espino-Solis, GP. Riaño-Umbarila, L. Becerril, B. Possani L. Antidotes against venomous animals : State of the art and prospectives. J Proteomics [Internet]. 2009;72(2):183–99. Available from: http://dx.doi.org/10.1016/j.jprot.2009.01.020
11. Pope CG. The Action of Proteolytic Enzymes on the Antitoxins and Proteins in Immune Sera: I. True Digestion of the Proteins. Br J Exp Pathol. 1939;20(2):132.
12. Gutierrez, Jose Maria. León, Guillermo. Lomonte B. Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clin Pharmacokinet. 2003;42(8):721–41.
13. Mora-Obando D, Guerrero-Vargas JA, Prieto-Sánchez R, Beltrán J, Rucavado A, Sasa M, et al. Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops asper venom. J Proteomics. 2014;96:159–72.
14. Otero R, León G, Gutierrez J, Rojas G, Toro M, Barona J et al. Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without β-propiolactone, in the treatment of Bothrops asper bites in Colombia. Trans R Soc Trop Med Hyg. 2006;100(12):1173–82.
15. Vázquez H, Olvera F, Alagón A, Sevcik C. Production of anti-horse antibodies induced by IgG, F(ab')2and Fab applied repeatedly to rabbits. Effect on antivenom pharmacokinetics. Toxicon [Internet]. 2013;76:362–9. Available from: http://dx.doi.org/10.1016/j.toxicon.2013.09.004
16. Otero R, Gutiérrez J, Beatriz Mesa M, Duque E, Rodríguez O, Luis Arango J, et al. Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon. 2002;40(8):1107–14.
17. Fox JW, Serrano SMT. Exploring snake venom proteomes: Multifaceted analyses for complex toxin mixtures. Proteomics. 2008;8(4):909–20.
18. Seifert SA, Boyer L V. Recurrence phenomena after immunoglobulin therapy for snake envenomations: Part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med. 2001;37(2):189–95.
19. Sarmiento K, Torres I, Guerra M, Ríos C, Zapata C, Suárez F. Epidemiological characterization of ophidian accidents in a Colombian tertiary referral hospital. Retrospective study 2004-2014. Rev Fac Med. 2018;66(2).
20. Poggi D. Veneno de serpiente en la industria e investigación farmacologica. Plan estratégico de desarrollo de la Bioindustria en el eje Amazonas-Marañón. 2002. 41 p.
21. Lomonte B. Venenos de serpiente: de la investigación al tratamiento. Acta Med Costarric [Internet]. 2012;54(2):86–96. Available from: http://www.scielo.sa.cr/scielo.php?pid=S0001-60022012000200004&script=sci_arttext
22. Theakston RDG, Lalloo DG. Venomous Bites and Stings. Princ Pract Travel Med Second Ed [Internet]. 2013;26(2):415–33. Available from: http://dx.doi.org/10.1016/j.idc.2012.03.006
23. Soler D, Dp R. Toxic and Clinical Aspects of Poisonous Snakes Bite in Domestic Animals. Fac Med Vet y Zootec. 2006;53(1):105–15.
24. Ortiz C, Lazo F, Bellido C, Gonzales E, Yarlequé A. Variaciones en las actividades enzimáticas del veneno de la serpiente Bothrops atrox “Jergón”, de tres zonas geográficas del Perú. Rev Peru Med Exp Salud Publica. 2012;29(2):198–205.
25. Chippaux JP, Goyffon M. Venoms, antivenoms and immunotherapy. Toxicon. 1998;36(6):823–46.
26. Pérez, M. Rojo C, Ruiz, M .Encinas M. Estudio del veneno de serpientes: tipos y tratamientos. Rev Complut Ciencias Vet [Internet]. 2008;2(2):100–4. Available from: http://revistas.ucm.es/index.php/RCCV/article/view/RCCV0808220100A
27. Sarmiento K. Aspectos biomédicos del accidente ofídico. Univ Méd Bogotá Colomb. 2012;53(1):68–85.
28. Gutiérrez JM. Comprendiendo los venenos de serpientes: 50 Años de investigaciones en América Latina. Rev Biol Trop. 2002;50(2):377–94.
29. Murillo, J. Prada E. Estudio químico y de toxicidad del veneno de serpientes de la familia viperidae Bothrops atrox mantenidas en cautiverio en el serpentario de la universidad de la amazonia. Universidad de la Amazonía; 2009.
30. Duqie-Zerpa, Carmen. Vargas A. Caracterización toxinológica del veneno de la serpiente Bothrops colombiensis de Paracotos, estado Miranda, Venezuela. Rev Científica. 2015;XXV(3):239–47.
31. Yarlequé M, Ortiz C, Morante Y, Yarlequé A. Estudio Comparativo De Algunas Propiedades Bioquímicas De Venenos De Serpientes De Diferentes Regiones. Rev Soc Quím Perú. 2012;78(1):27–36.
32. Castrillón-Estrada DF, Acosta Vélez JG, Hernández-Ruiz EA, Alonso Palacio LM. Envenenamiento ofídico. Salud Uninorte. 2007;23(1):96–111.
33. Sandoval G. Propiedades bioquímicas e inmunológicas de una enzima similar a trombina aislada del veneno de la serpiente peruana Bothrops atrox (“jergón”). Universidad Nacional Mayor de San Marcos; 2009.
34. Felicori LF, Souza CT, Velarde DT, Magalhaes A, Almeida AP, Figueiredo S, et al. Kallikrein-like proteinase from bushmaster snake venom. Protein Expr Purif. 2003;30(1):32–42.
35. Hung CC, Chiou SH. Fibrinogenolytic proteases isolated from the snake venom of Taiwan Habu: Serine proteases with kallikrein-like and angiotensin-degrading activities. Biochem Biophys Res Commun. 2001;281(4):1012–8.
36. Calvete JJ. Snake venomics: From the inventory of toxins to biology. Toxicon. 2013;75:44–62.
37. Salazar-Valenzuela D, Mora-Obando D, Fernández ML, Loaiza-Lange A, Gibbs HL, Lomonte B. Proteomic and toxicological profiling of the venom of Bothrocophias campbelli, a pitviper species from Ecuador and Colombia. Toxicon. 2014;90:15–25.
38. Núñez V, Cid P, Sanz L, De La Torre P, Angulo Y, Lomonte B, et al. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J Proteomics. 2009;73:57–78.
39. Jiménez-Charris E, Montealegre-Sanchez L, Solano-Redondo L, Mora-Obando D, Camacho E, Castro-Herrera F, et al. Proteomic and functional analyses of the venom of Porthidium lansbergii lansbergii (Lansberg's hognose viper) from the Atlantic Department of Colombia. J Proteomics. 2015;114:287–99.
40. Madrigal M, Sanz L, Flores-Díaz M, Sasa M, Núñez V, Alape-Girón A, et al. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. J Proteomics. 2012;77:280–97.
41. Calvete J, Sanz L, Cid P, De La Torre P, Flores-Díaz M, dos Santos C et al. Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America. J Proteome Res. 2010;9:528–44.
42. Fernández Culma M, Andrés Pereañez J, Núñez Rangel V, Lomonte B. Snake venomics of Bothrops punctatus , a semiarboreal pitviper species from Antioquia, Colombia. PeerJ [Internet]. 2014;2(2004):e246. Available from: https://peerj.com/articles/246
43. Gutiérrez JM, Escalante T, Rucavado A. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon. 2009;54:976–87.
44. Patiño AC, Pereañez JA, Gutiérrez JM, Rucavado A. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon. 2013;63:32–43.
45. Salazar A, Aguilar I, Guerrero B, Giron M, Lucena S, Sanchez E, et al. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagul Fibrinolysis. 2008;19:525–30.
46. Patiño AC, Pereañez JA, Gutiérrez JM, Rucavado A. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon [Internet]. 2013;63(1):32–43. Available from: http://dx.doi.org/10.1016/j.toxicon.2012.11.010
47. Pereañez JA, Camilo-Patiño A, Henao-Castañeda IC. Toxinas provenientes de venenos de serpiente: blancos terapéuticos, herramientas en investigación biomédica y agentes con potencial terapéutico. Curare. 2014;1(1):49–60.
48. Yang D, Dobson J, Cochran C, Dashevsky D, Arbuckle K, Benard M, et al. The Bold and the Beautiful : a Neurotoxicity Comparison of New World Coral Snakes in the Micruroides and Micrurus Genera and Relative Neutralization by Antivenom. neurotox Res. 2017;
49. Minsalud. Guía para el Manejo de Emergencias Toxicológicas [Internet]. 2016. 69-125 p. Available from: http://www.atoxicologiacc.org.co/guia-para-el-manejo-de-urgencias-toxicologicas/
50. Guerrero, Jaime. Benard, Melisa. Restano, Rita. Zamudio, Fernando. Corzo G, Alagón, Alejandro, Olvera A. Cloning and sequencing of three- fi nger toxins from the venom glands of four Micrurus species from Mexico and heterologous expression of an alpha-neurotoxin from Micrurus diastema. Biochimie. 2018;147:114–21.
51. Bénard-Valle M, Carbajal-Saucedo A, De Roodt A, López-Vera E, Alagón A. Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and a reptile model. Toxicon [Internet]. 2014;77:6–15. Available from: http://dx.doi.org/10.1016/j.toxicon.2013.10.005
52. Monje-Belmonte S. Determinación De La Dosis Letal Media (DL 50 ) De Cinco Especies Del Género Micrurus En Estado De Cautiverio En Nilo-Cundinamarca (Colombia). 2007;1–125.
53. de Roodt Adolfo Rafael, García Susana Isabel, Gómez Carlos Mario, Estévez Judith, Alagón Alejandro, Gould Eduardo Guillermo, Paniagua-Solís Jorge Fernando, Dolab Jorge Adrián COH. Antitoxinas y antivenenos para uso terapéutico. Acta Toxicol Argent. 2004;12(2).
54. Bioclon. Faboterápico polivalente antiofídico Antivipmyn [Internet]. Mexico; 2017. p. 4. Available from: http://consultaregistro.invima.gov.co:8082/Consultas/consultas/consreg_encabcum.jsp
55. Tanaka GD, Sant'anna OA, Marcelino JR, Lustoza Da Luz AC, Teixeira Da Rocha MM, Tambourgi D V. Micrurus snake species: Venom immunogenicity, antiserum cross-reactivity and neutralization potential. Toxicon. 2016;117:59–68.
56. Gutiérrez JM, Rojas G, da Silva Jr NJ, Núñez J. Experimental myonecrosis induced by the venoms of South American Micrurus (coral snakes). Toxicon. 1992;30(10):1299–302.
57. Silveira de Oliveira J, Rossan de Brandão Prieto da Silva A, Soares MB, Stephano M a, de Oliveira Dias W, Raw I, et al. Cloning and characterization of an alpha-neurotoxin-type protein specific for the coral snake Micrurus corallinus. Biochem Biophys Res Commun. 2000;267:887–91.
58. Hurtado O, Urán, J. Villa J. Protocolo de atención prehospitalaria para el manejo integral del accidente ofídico Bpthrópico en Colômbia. 2013.
59. Mendoza J. Producción de anticuerpos policlonales inmunoglobulina Y, en huevos de gallinas inmunizadas con el veneno de la serpiente peruana Bothrops atrox (jergón). 2010.
60. Díaz P, Malavé C, Zerpa N, Vázquez H, D'Suze G, Montero Y, et al. IgY pharmacokinetics in rabbits: Implications for IgY use as antivenoms. Toxicon. 2014;90:124–33.
61. Alagón A. Anticuerpos terapéuticos: el caso de los antivenenos [Internet]. Mexico; 2001. Available from: https://es.scribd.com/document/304497980/ALAGON-ANTICUERPOS-TERAPEUTICOS
62. Otero, R. Gutiérrez JM, Núñez V, Robles A, Estrada R, Segura E, Toro MF, García ME, Díaz A, Ramírez EC, Gómez G, Castañeda J MM. A randomized double-blind clinical trial of two antivenoms in patients bitten by Bothrops atrox in Colombia. Trans R Soc Trop Med Hyg. 1996;90(6):696–700.
63. G-Biosciences. Fab Fragmentation, for the generation of Fab Fragments from IgG. [Internet]. 2013. Available from: technical@GBiosciences.com
64. Sanjuán-galindez J, Vargas J, Ortiz F, Gonzalez-herrera L, Watanabe-minto B, Granja-salcedo Y. Determinación de la DL50 del veneno de serpientes adultas de la especie. Momentos Cienc. 2012;9(2):147–52.
65. Duque C, et al. Caracterización toxinológica del veneno de bothrops atrox de Puerto Ayacucho, edo. Amazonas (Venezuela) y su neutralización por un antiveneno venezolano. Rev Científica. 2014;XXIV(4):355–62.
66. Valverde, David. Lai, Tony. Estrada R. Productividad Antiofídica De Equinos Destinados a La Industria Inmunobiológica En Costa Rica. Nutr Anim Trop. 2014;8(1):44–54.
67. Estrada R, Gutiérrez JM, Alvarado J, Robles A, Avila C, González N. Desarrollo de la respuesta de anticuerpos anti-fosfolipasa A2 en caballos inoculados con veneno para la producción de suero antiofídico polivalente en Costa Rica. Rev Biol Trop. 1989;37(2):187–91.
68. Bogado F, Núñez S, Mussart NB, Leiva L, Acosta OC. Cambios clínicos, hemáticos y coagulativos consecuentes al aumento de anticuerpos en equinos productores de suero antiofídico. Rev Vet. 2013;24(1):3–9.
69. Fusco L, Acosta O, Leiva L. Comparación de protocolos de inmunización en la produccion de antiveneno crotálico. Universidad tecnológica nacional. 2010;2–6.
70. Segura álvaro, Herrera M, Villalta M, Vargas M, Gutiérrez JM, León G. Assessment of snake antivenom purity by comparing physicochemical and immunochemical methods. Biologicals [Internet]. 2013;41(2):93–7. Available from: http://dx.doi.org/10.1016/j.biologicals.2012.11.001
71. De Roodt, Rafael A, Eduardo G, Jorge A, Malbrán INPBANLISCG, Vélez A, et al. Comparación entre dos métodos de producción para la elaboración de antivenenos ofídicos. Acta Toxicol Argent. 2010;18(1):10–20.
72. Pierce chemical technical library. Antibody fragmentation. www.piercenet.com. 2017. p. 8.
73. Ismail, M; Abd-Elsalam A. Pharmacokinetics Of 125 I -Labelled IgG , F(ab') 2 And Fab Fractions Of Scorpion And Snake Antivenins : Merits And Potential For Therapeutic Use. Toxicon. 1998;36(11):1523–8.
74. Stowers RS, Callihan JA, Bryers JD. Optimal Conditions for F (ab’) 2 Antibody Fragment Production from Mouse IgG2a. J Undergrad Res Bioeng [Internet]. 2008;16–20. Available from: http://www.uweb.engr.washington.edu/education/pdf/stowers.pdf
75. Liu C-C, You C-H, Wang P-J, Yu J-S, Huang G-J, Liu C-H, et al. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLoS Negl Trop Dis. 2017 Dec;11(12):e0006138–e0006138.
76. Lomonte B. Manual de métodos Inmunológicos [Internet]. cuarta. Costa Rica: Universidad de Costa Rica; 2007. 135 p. Available from: http://www.icp.ucr.ac.cr/~blomonte/
77. Mahmood T, Yang PC. Western blot: Technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429–34.
78. Krifi MN, El Ayeb M, Dellagi K. The improvement and standardization of antivenom production in developing countries: comparing antivenom quality, therapeutical efficiency, and cost [Internet]. Vol. 5, Journal of Venomous Animals and Toxins. 1999. p. 128–41. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-79301999000200002&lng=en&nrm=iso&tlng=en
79. Moffat, Anhony. Osselton, David. Widdop B. Clarke´s Analysis of Drugs and Poisons [Internet]. FOURTH. Press P, editor. USA: Pharmaceutical Press; 2011. 2500 p. Available from: http://www.betterhealth.vic.gov.au/bhcv2/bhcarticles.nsf/pages/Drugs_and_poisons_regulations?open
80. Otero-Patiño R, Segura Á, Herrera M, Angulo Y, León G, Gutiérrez JM, et al. Comparative study of the efficacy and safety of two polyvalent, caprylic acid fractionated [IgG and F(ab')2] antivenoms, in Bothrops asper bites in Colombia. Toxicon. 2012;59(2):344–55.
81. Hock C, Mui S, Ariaranee C, Yee S, Hong N. Toxicon Pharmacokinetics of the Sri Lankan hump-nosed pit viper ( Hypnale hypnale ) venom following intravenous and intramuscular injections of the venom into rabbits. Toxicon [Internet]. 2014;79:37–44. Available from: http://dx.doi.org/10.1016/j.toxicon.2013.12.011
82. Ismail M. A Three-Compartment Open Pharmacokinetic Model Can Explain Variable Toxicities Of Cobra Venoms And Their Alpha Toxins. Toxicon. 1996;34(9):1011–26.
83. Mui S, Saremi K, Hong N, Yee S. International Immunopharmacology Pharmacokinetics of Cryptelytrops purpureomaculatus ( mangrove pit viper ) venom following intravenous and intramuscular injections in rabbits. Int Immunopharmacol [Internet]. 2013;17(4):997–1001. Available from: http://dx.doi.org/10.1016/j.intimp.2013.10.007
84. Schroeder HWJ, Cavacini L. Structure and Function of Immunoglobulins (author manuscript). J Allergy Clin Immunol. 2010;125:S41–52.
85. Squaiella-Baptistaõ CC, Marcelino JR, Ribeiro Da Cunha LE, Gutíerrez JM, Tambourgi D V. Anticomplementary activity of horse IgG and F(ab')2 antivenoms. Am J Trop Med Hyg. 2014;90(3):574–84.
86. Sotelo N. Review of treatment and complications in 79 children with rattlesnake bite. Clin Pediatr (Phila). 2008;47(5):483–9.
87. Aschermann S, Lux A, Baerenwaldt A, Biburger M, Nimmerjahn F. The other side of immunoglobulin G: Suppressor of inflammation. Clin Exp Immunol. 2010;160(2):161–7.
88. Gutierrez, JM. León, G. Lomonte B. Relationships of Immunoglobulin Therapy for Envenomation. Clin Pharmacokinet. 2003;42(8):721–41.
89. Otero R, Cardoso JLC, Higashi HG, Nunez V, Diaz A, Toro MF, et al. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. Am J Trop Med Hyg. 1998;58(2):183–9.
90. Otero R, Gutiérrez JM, Rojas G, Núñez V, Díaz A, Miranda E, et al. A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG, in Bothrops and Porthidium snake bites in Colombia: Correlation between safety and biochemical characteristics of antivenoms. Toxicon. 1999;37(6):895–908.
91. Pardal P, Medeiro S, Al E. Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil. Trans R Soc Trop Med Hyg. 2004;98(1):28–42.
92. Smalligan R et al. Crotaline snake bite in the Ecuadorian Amazon: randomised double blind comparative trial of three South American polyspecific antivenoms. Bmj [Internet]. 2004;329(7475):1129–0. Available from: http://www.bmj.com/cgi/doi/10.1136/bmj.329.7475.1129
93. Otero-patiño, R; Silva-haad, J; Barona M et al. Accidente bothrópico en Colombia: estudio multicéntrico de la eficacia seguridad de Antivipmyn-Tri®, un antiveneno polivalente producido en México. Iatreia. 2007;20(3):244–62.
94. Iran M-S, Tavares, Magela. Sachett A et al. Safety and efficacy of a freeze-dried trivalent antivenom for snakebites in the Brazilian Amazon: An open randomized controlled phase IIb clinical trial. PLoS Negl Trop Dis. 2017;11(11):1–21.
95. Leon G, Rojas G, Lomonte B, Gutierrez JM. Immunoglobulin G and F(ab')2 polyvalent antivenoms do not differ in their ability to neutralize hemorrhage, edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom. Toxicon. 1997 Nov;35(11):1627–37.
96. Sánchez L V, Pla D, Herrera M, Chippaux JP, Calvete JJ, Gutiérrez JM. Evaluation of the preclinical efficacy of four antivenoms, distributed in sub-Saharan Africa, to neutralize the venom of the carpet viper, Echis ocellatus, from Mali, Cameroon, and Nigeria. Toxicon. 2015;106.
97. Rocha ML, Valença RC, Maia MBS, Guarnieri MC, Araujo IC, Araujo DAM. Pharmacokinetics of the venom of Bothrops erythromelas labeled with 131 I in mice. Toxicon. 2008;52:526–9.
98. Abdel-Aty AM, Wahby AF. Purification and characterization of five snake venom metalloproteinases from Egyptian Echis pyramidum pyramidum venom. J Toxicol Sci. 2014 Aug;39(4):523–36.
99. Pla D, Rodríguez Y, Calvete JJ. Third generation antivenomics: Pushing the limits of the in vitro preclinical assessment of antivenoms. Toxins (Basel). 2017;9(5).
100. Calvete JJ, Sanz L, Pla D, Lomonte B, Gutierrez JM. Omics meets biology: application to the design and preclinical assessment of antivenoms. Toxins (Basel). 2014 Dec;6(12):3388–405.
101. Lomonte B, Escolano J, Fernández J, Sanz L, Angulo Y, Gutiérrez JM, et al. Snake venomics and antivenomics of the arboreal neotropical pitvipers bothriechis lateralis and bothriechis schlegelii. J Proteome Res. 2008;7(6):2445–57.
102. Calvete JJ, Cid P, Sanz L, Segura A, Villalta M, Herrera M, et al. Antivenomic assessment of the immunological reactivity of EchiTAb-Plus-ICP, an antivenom for the treatment of snakebite envenoming in sub-Saharan Africa. Am J Trop Med Hyg. 2010 Jun;82(6):1194–201.
103. Sánchez A, Herrera M, Villalta M, Solano D, Segura Á, Lomonte B, et al. Proteomic and toxinological characterization of the venom of the South African Ringhals cobra Hemachatus haemachatus. J Proteomics. 2018;181.
Cómo citar
Sarmiento, K., Rodríguez, A., Quevedo-Buitrago, W., Torres, I., Ríos, C., Ruíz, L., Salazar, J., Hidalgo-Martínez, P., & Diez, H. (2019). Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura: Evolución de antivenenos antiofídicos. Universitas Medica, 61(1). https://doi.org/10.11144/Javeriana.umed61-1.anti
Sección
Artículos de revisión