Impactos socioeconómicos del cambio climático en América Latina y el Caribe: 2020-2045

Jesús José Rodríguez De Luque, Carlos Eduardo Gonzalez Rodríguez, Sharon Gourdji, Daniel Mason-D’Croz, Diego Obando Bonilla, Jeison Mesa Diez, Steven D Prager

Resumen


En América Latina y el Caribe (ALC), el arroz, el trigo, el maíz, el frijol y la soya juegan un papel importante debido a sus aportes a la economía y a la seguridad alimentaria. Dada la existencia de evidencia que señala que a nivel mundial se presentarían cambios en el clima en el mediano plazo, en el presente texto se evalúan los impactos socioeconómicos que habría a niveles de ALC si no fueran implementadas medidas de adaptación. Con este fin, se realiza una integración entre modelos climáticos, de cultivos y económicos. Los resultados muestran que los crecimientos de las producciones de maíz y frijol caerían de manera importante en Nicaragua, El Salvador, Guatemala, Honduras, Colombia, Venezuela y Brasil, y los del arroz y trigo presentarían importantes disminuciones en Brasil, Argentina y Uruguay. Finalmente, se encuentra que el cambio climático tiene la capacidad de frenar parte de los avances en materia de seguridad alimentaria en la región, debido a sus efectos negativos sobre la disponibilidad de alimentos.


Palabras clave


cambio climático; agricultura; seguridad alimentaria; América Latina; Caribe; economía

Texto completo:

.PDF Sin título

Referencias


Degiovanni, V., Martinez, C., & Motta, F. (2010). Producción eco-eficiente del arroz en América Latina. Centro Internacional de Agricultura Tropical (CIAT). Retrieved from http://ciat-library.ciat.cgiar.org/Articulos_Ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdf

Evenson, R., Pray, C., & Rosegrant, M. (1999). Agricultural Research and Productivity Growth in India (IFPRI Research Report No. 109). International Food Policy Research Institute.

FAO. (2003). Trade Reforms and Food Security Conceptualizing the linkages. Retrieved from ftp://ftp.fao.org/docrep/fao/005/y4671e/y4671e00.pdf

FAO, IIASA, ISRIC, ISS-CAS, & JRC. (2012). Harmonized World Soil Database (version 1.2).

Fischer, G., Shah, M., Tubiello, F. N., & Velhuizen, H. van. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1463), 2067–2083. http://doi.org/10.1098/rstb.2005.1744

Fraser, E. D. G., Simelton, E., Termansen, M., Gostling, S., & South, A. (2013). “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195–205. http://doi.org/10.1016/j.agrformet.2012.04.008

Gourdji, S. M., Sibley, A. M., & Lobell, D. B. (2013). Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. ENVIRONMENTAL RESEARCH LETTERS, 8. http://doi.org/http://dx.doi.org/10.1088/1748-9326/8/2/024041

Gourdji, S., Mesa, J., Moreno, P., Navarro, C., Obando, D., Fisher, M. J., & Ramirez-Villegas, J. (en prensa). Modeling of present-day and future agricultural yields for regionally important crops. CIAT.

IPCC Working Group. (2013). The Physical Science Basis. Retrieved from http://www.climatechange2013.org/

Jarvis, A., Ramirez, J., Herrera, B. V., & Navarro, C. (2012). Is cassava the answer to African Climate Change Adaptation? Tropical Plant Biology, 5(1), 9–29. http://doi.org/10.1007/s12042-012-9096-7

Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. ., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. Modelling Cropping Systems: Science, Software and Applications, 18(3–4), 235–265. http://doi.org/10.1016/S1161-0301(02)00107-7

Lobell, D. B., Banziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Clim. Change, 1(1), 42–45. http://doi.org/10.1038/nclimate1043

Meadu, V., Coche, I., Vermeulen, S., & Engelund Friss, A. (2015). The Paris Climate Agreement: what it means for food and farming (CCAFS Info Notes) (p. 4). Retrieved from https://cgspace.cgiar.org/bitstream/handle/10568/69225/CCAFS info note AgCop21.pdf?sequence=1&isAllowed=y

Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., … Lee, D. (2009). Climate Change Impact on Agriculture and Costs of Adaptation (p. 30). Washington, D.C: International Food Policy Research Institute. Retrieved from http://www.ifpri.org/sites/default/files/publications/pr21.pdf

Nelson, G., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., … Willenbockel, D. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences, 111(9), 3274–3279. http://doi.org/10.1073/pnas.1222465110

O’Neill, B., Kriegler, E., Riahi, K., Ebi, K. L., Hallegate, S., Carter, T. R., … van Vuuren, D. P. (2014). A new scenario framework for climate change research: the concept of share socioeconomic pathways. Climatic Change, (122), 387–400. http://doi.org/10.1007/s10584-013-0905-2

Portman, F., Siebert, S., & Doll, S. (2010). Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global BiogeochemicalCycles. http://doi.org/10.1029/2008GB003435

Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nat Commun, 6. Retrieved from http://dx.doi.org/10.1038/ncomms6989

Robinson, S., Mason-D’Croz, D., Islam, S., Sulser, T., Gueneau, A., Pitois, G., & Rosegrant, M. W. (2015). The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3 (IFPRI Discussion Paper). Washington, D.C: International Food Policy Research Institute. Retrieved from http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/129825

Rosas, J. C., Castro, A., Beaver, J. S., Pérez, C. A., Morales, A., & Lepiz, R. (2000). Mejoramiento genético para tolerancia a altas temperaturas y resistebncia a mosaico dorado en frijol común. Agronomia Mesoamericana, 11(1), 1–10.

Rosegrant, M. W., Koo, J., Cenacchi, N., Ringler, C., Robertson, R., Fisher, M., … Sabbagh, P. (2014). Food security in a world of natural resource scarcity : the role of agricultural technologies. International Food Policy Research Institute. Retrieved from http://dx.doi.org/10.2499/9780896298477

Schmidt, A., Eitzinger, A., Sonder, K., & Sain, G. (2012). Tortillas on the Roaster Central American Maize-Bean Systems and the Changing Climate (p. 127). Baltimore: Maryland, USA; Cali: Colombia. Mexico, D.F.: Mexico.

Vaghefi, N., Nasir Shamsudin, M., Radam, A., & Rahim, K. . (2013). Modelling the Impact of Climate Change on Rice Production: An Overview, 13. http://doi.org/http://dx.doi.org/10.3923/jas.2013.5649.5660

Wheeler, T., & von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341, 508–513. http://doi.org/10.1126/science.1239402

Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., Mensbrugghe, D. van der, Biewald, A., … Willenbockel, D. (2015). Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 10(8), 85010.

You, L., Wood-Sichra, U., Fritz, S., Guo, Z., See, L., & Koo, J. (2014). Spatial Production Allocation Model (SPAM). Retrieved June 10, 2015, from http://mapspam.info/




DOI: http://dx.doi.org/10.11144/Javeriana.cdr13-78.iscc

Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM

Enlaces refback

  • No hay ningún enlace refback.




Licencia de Creative Commons
Esta obra está registrada bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.
Creado a partir de http://revistas.javeriana.edu.co/.