Extinción y renovación de la memoria espacial en humanos
##plugins.themes.bootstrap3.article.details##
Participantes humanos fueron entrenados en un laberinto virtual de agua para localizar en dos fases sucesivas una plataforma cuya ubicación fue específica a la fase vigente. Posteriormente realizaron una prueba sin plataforma. El Grupo ABA realizó la primera fase y la prueba en un contexto A, y la segunda fase en un contexto B. El Grupo ABB realizó la primera fase en el contexto A, y la segunda fase y la prueba en el contexto B. Ambos grupos localizaron la plataforma en cada fase. Durante la prueba, la última ubicación de la plataforma fue preferida por el Grupo ABB, mientras que la primera ubicación fue preferida por el Grupo ABA. Estos resultados indican renovación de la memoria espacial en humanos
Associative learning, virtual water maze, spatial preference, extinction, recovery effectsAprendizaje asociativo, laberinto virtual de agua, preferencia espacial, extinción, efectos de recuperación.
Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2011). Using maze suite and functional near infrared spectroscopy to study learning in spatial navigation. Journal of Visualized Experiments, 56, e3443. doi: 10.3791/3443
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of pavlovian learning. Psychological Bulletin, 114, 80-99. doi: http://dx.doi.org/10.1037/0033-2909.114.1.80
Bouton, M. E., & King, D. A. (1983). Contextual control of the extinction of conditioned fear: Tests for the associative value of the context. Journal of Experimental Psychology: Animal Behavior Processes, 9, 248-265. doi: http://dx.doi.org/10.1037/0097-7403.9.3.248
Bouton, M., E., & Brooks, D., C. (1993). Time and context effects on performance in a pavlovian discrimination reversal. Journal of Experimental Psychology: Animal Behavior Processes, 19, 165-179.
Burgess, N., Jackson, A., Hartley, T., & O'keefe, J. (2000). Predictions derived from modelling the hippocampal role in navigation. Biological Cybernetics, 83, 301-312.
Devenport, L. D. (1984). Extinction-induced spatial dispersion in the radial arm maze: arrest by ethanol. Behavioral Neuroscience, 98, 979-985. doi: http://dx.doi.org/10.1037/0735-7044.98.6.979
Foster, D. J., Morris, R. G. M., & Dayan, P. (2000). A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus, 10, 1-16. doi:10.1002/(SICI)1098-1063(2000)10:1<1::AID-HIPO1>3.0.CO;2-1
García-Gutiérrez, A., & Rosas, J. M. (2003). Recuperación de la relación clave-consecuencia por el cambio de contexto después de la interferencia en aprendizaje causal. Psicológica, 24, 243-270.
Hampson, E. (1995). Spatial cognition in humans: Possible modulation by androgens and estrogens. Journal of Psychiatry and Neurosciences, 20, 397-404.
Hardt, O., Hupbach, A., & Nadel, L. (2009). Factors moderating blocking in human place learning: The role of task instructions. Learning & Behavior, 37, 42-59. doi: 10.3758/LB.37.1.42
Hardt, O., Wang, S. H., & Nader, K. (2009). Storage or retrieval deficit: the yin and yang of amnesia. Learning & Memory, 16, 224-230. doi: 10.1101/lm.1267409
Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28, 521-541. doi: 10.1006/lmot.1997.0977
Kinloch, J. M., Foster, T. M., & McEwan, J. S. (2009). Extinction-induced variability in human behavior. The Psychological Record, 59, 347-370. http://hdl.handle.net/10289/4573
Lattal, K. M., Mullen, M. T., & Abel, T. (2003). Extinction, renewal and spontaneous recovery of a spatial preference in the water maze. Behavioral Neuroscience, 117, 1017-1028. doi: http://dx.doi.org/10.1037/0735-7044.117.5.1017
Leising, K. J, & Blaisdell, A. P. (2009). Associative basis of landmark learning and integration in vertebrates. Comparative Cognition & Behavior Reviews, 4, 80-102.
Leising, K. J., Wong, J., & Blaisdell, A. P. (2015). Extinction and spontaneous recovery of spatial behavior in pigeons. Journal of Experimental Psychology: Animal Learning and Cognition, 41, 371. doi: http://dx.doi.org/10.1037/xan0000076
Luna, D., & Martínez, H. (2015). Spontaneous recovery of human spatial memory in a virtual water maze. Psicológica, 36, 283-308.
Mackintosh, N.J., 1983. Conditioning and Associative Learning. Oxford University Press, New York.
Maei, H. R., Zaslavsky, K., Teixeira, C. M., & Frankland, P. W. (2009). What is the most sensitive measure of water maze probe test performance? Frontiers in Integrative Neuroscience, 3, 1-9. doi: 10.3389/neuro.07.004.2009
Méndez-Couz, M., Conejo, N. M., Vallejo, G., & Arias, J. L. (2015). Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task. Behavioural Brain Research, 287, 247-255. doi: 10.1016/j.bbr.2015.03.033
Méndez-Couz, M., Conejo, N. M., Vallejo, G., & Arias, J. L., (2014). Spatial memory extinction: A c-Fos protein mapping study. Behavioural Brain Research, 260, 101-110. doi: http://dx.doi.org/10.1016/j.bbr.2013.11.032
Nakajima, S., Tanaka, S., Urushihara, K., & Imada, H. (2000). Renewal of extinguished lever-press responses upon return to the training context. Learning and Motivation, 31, 416-431. doi: 10.1006/lmot.2000.1064
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.
Pavlov, I. (1927). Conditioned reflexes. Inglaterra: Oxford University Press.
Prados, J., Manteiga, D., & Sansa, J. (2003). Recovery effects after extinction in the Morris swimming pool navigation task. Learning & Behavior, 31, 299-304.
Pravosudov, V. V., & Roth II, T. C. (2013). Cognitive ecology of food hoarding: The evolution of spatial memory and the hippocampus. Annual Review of Ecology, Evolution, and Systematics, 44, 173-193. doi:10.1146/annurev-ecolsys-110512-135904
Quirk, G. J., & Muller, D. (2008). Neural mechanisms of extinction learning and retrieval Neuropsychopharmacology, 33, 56-72. doi: 10.1038/sj.npp.1301555
Rescorla, R. A. (2001). Experimental extinction. In R. R. Mowrer & S. B. Klein (Eds.), Handbook of contemporary learning theories (pp. 119-154). Mahwah, N. J.: Lawrence Erlbaum Associates, Inc.
Rescorla, R. A., & Wagner, A. (1972). A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. En A. Black & W. Prokasy (Eds.), Classical conditioning II: current research and theory (pp. 64-99). New York: Appleton-Century-Crofts.
Rossato, J. I., Bevilaqua, L. R. M., Medina, J. H., Izquierdo, I., & Cammarota, M., (2006). Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learning & Memory, 13, 431-440. doi: 10.1101/lm.315206
Sánchez-Carrasco, L., & Nieto, J. (2009). Recuperación de respuestas: una revisión de la evidencia y del modelo de recuperación de información. Revista Mexicana de Análisis de la Conducta, 35, 45-59.
Thomas, B. L., Larsen, N., & Ayres, J. J. B. (2003). Role of context similarity in ABA, ABC, and AAB renewal paradigms: Implication s for theories of renewal and for treating human phobias. Learning and Motivation, 34, 410-436. doi: 10.1016/S0023-9690(03)00037-7
W. M. A. (World Medical Association Declaration of Helsinki) (2008). Ethical principles for medical research involving human subjects. In World Medical Association. Recuperado de http://www.wma.net/en/30publications/10policies/b3/index.html
Wasserman, E. A. (1993). Comparative cognition: Beginning the second century of the study of animal intelligence. Psychological Bulletin, 113, 211-228. doi: http://dx.doi.org/10.1037/0033-2909.113.2.211