Abstract
The loggerhead marine turtle, Caretta caretta, is a widely distributed and endangered species that is facing critical population decline, especially in Colombian Caribbean rookeries. Mitochondrial DNA sequence data are of great importance for the description, monitoring, and phylogenetic analyses of migratory turtle populations. In this study, the first full mitochondrial genome of a loggerhead turtle nesting in the Colombian Caribbean was sequenced and analyzed. This mitochondrial genome consists of 16 362 bp with a nucleotide composition of T: 25.7 %, C: 27 %, A: 35 % and G: 12 %. Sequence annotation of the assembled molecule revealed an organization and number of coding and functional units as reported for other vertebrate mitogenomes. This Colombian loggerhead turtle (Cc-AO-C) showed a novel D-Loop haplotype consisting of thirteen new variable sites, sharing 99.2 % sequence identity with the previously reported Caribbean loggerhead CC-A1 D-Loophaplotype. All 13 protein-coding genes in the Cc-AO-C mitogenome were compared and aligned with those from four other loggerhead turtles from different locations (Florida, Greece, Peru, and Hawaii). Eleven of these genes presented moderate genetic diversity levels, and genes COII and ND5 showed the highest diversity, with average numbers of pair-wise differences of 16.6 and 25, respectively. In addition, the first approach related to t-RNAs 2D and 3D structure analysis in this mitogenome was conducted, leading to observed unique features in two tRNAs (tRNATrp and tRNALeu). The marine turtle phylogeny was revisited with the newly generated data. The entire mitogenome provided phylogenetically informative data, as well as individual genes ND5, ND4, and 16S. In conclusion, this study highlights the importance of complete mitogenome data in revealing gene flow processes in natural loggerhead turtle populations, as well as in understanding the evolutionary history of marine turtles.
References
Pritchard PCH, and Mortimer JA. (1999). Taxonomy External Morphology, and Species Identification, p-21- 38. In: Eckert KL, Bjornald A. Abreu-Grobois and Donelly M. (eds), Research and Management Techniques fot the Conservation.of Sea Turtles. IUCN/SSC. Marine Turtle Specialist Group Public. No.4. Washington. D.C.
Ceballos-Fonseca CP. (2000). Tortugas (Testudinata) marinas y continentales de Colombia. Biota Colombiana, 1(2), 187-194.
Ceballos-Fonseca C. (2004) Distribución de playas de anidación y áreas de alimentación de tortugas marinas y sus amenazas en el Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 33:79-99
Amorocho D. (2003). Monitoring nesting loggerhead turtles (Caretta caretta) in the central Caribbean coast of Colombia. Marine Turtle Newsletter, 101, 8-13.
FWC (2015) A statistical analysis of trends in Florida’s loggerhead nest counts with data through 2012. Florida Fish and Wildlife Conservation Commission. http://myfwc. com/research/wildlife/sea-turtles/ nesting/loggerhead-trends/ [revise February, 2016]
Dodd CK. (1988) Synopsis of the biological data on the loggerhead sea turtle Caretta caretta (Linnaeus 1758). Fish and Wildlife Service Biological Report, 88(14):1-110 p.
Lancheros-Piliego D, and Hernández Fernández J. (2013). AMDAR and PCR-Extra-fast for Molecular identification of the loggerhead sea turtle Caretta caretta (Testudines: Cheloniidae) using the mitochondrial gene cytochrome c oxidase I (COI). Universitas Scientiarum, 18(3), 321-330. doi: 10.11144/Javeriana.SC18-3.apit
UICN. (2016). IUCN Red List of Threatened Species. Versión 2015.4. www.iucnredlist.org. (Consulted: 02-II- 2016).
Eckert KL, Bjorndal KA, Abreu-Grobois, FA., and Donnelly, M. (2000). Técnicas de Investigación y Manejo para la Conservación de las Tortugas Marinas. Grupo especialista en Tortugas Marinas. Unión Internacional para la Conservación de la Naturaleza y Comisión de Supervivencia de Especies, Publicación, (4).
Machado A, Bermejo JA. (2012). Estado de conservación de la tortuga boba (Caretta caretta) en las islas Canarias. Plan de seguimiento de la tortuga boba en Canarias. Santa Cruz de Tenerife: Observatorio Ambiental Granadilla; 154 pp.
SWOT. (2012) The state of the world’s turtles. The world’s most (and least) threatened sea turtles. SWOT Report VII. Arlington: SeaturtleStatus.org 7:48
Humber F, Godley B J, and Broderick, A. C. (2014), So excellent a fishe: a global overview of legal marine turtle fisheries. Diversity and Distributions, 20: 579–590. doi:10.1111/ddi.12183
Drosopoulou E, Tsiamis G, Mavropoulou M, Vittas S, Katselidis KA, Schofield G, Palaiologou D, Sartsidis T, Bourtzis K., Pantis J, and Scouras Z. G. (2012). The complete mitochondrial genome of the loggerhead turtle Caretta caretta (Testudines: Cheloniidae): Genome description and phylogenetic considerations. Mitochondrial DNA, 23(1), 1-12. doi: 10.3109/19401736.2011.637109
Duchene S, Frey A, Alfaro-Núñez A, Dutton PH, Thomas P, Gilbert M, and Morin PA. (2012). Marine turtle mitogenome phylogenetics and evolution. Molecular Phylogenetics and Evolution, 65(1), 241-250. doi: 10.1016/j.ympev.2012.06.010
Avise JC. (1994). Molecular Markers, natural history and evolution. London: Chapman and Hall.
MITOMAP: A Human Mitochondrial Genome Database. http://www.mitomap.org, 2015.
Suzuki T, Nagao A, and Suzuki T. (2011), Human Mitochondrial tRNAs: Biogenesis, Function, Structural Aspects, and Diseases. Annual Review of Genetics, 45, 299-329. doi: 10.1146/annurev-genet-110410-132531
Azanza J, Ruisanchez Ibarra M, Ruiz-Urquiola A, Luis C, and Ríos-Tamayo. (2006). Indicadores del éxito reproductivo de la tortuga verde (Chelonia mydas) en tres playas de la península de Guanahacabibes, Pinar del río, Cuba. Investigaciones Marinas, 27(1):69-78, 69
Chiari Y, Cahais V, Galtier N, and Delsuc F. (2012). Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 10(1), 65. doi: 10.1186/1741-7007-10-65
Moritz C. (1994). Applications of mitochondrial DNA analysis in conservation: a critical review. Molecular Ecology, 3,40141. doi: 10.1111/j.1365-294X.1994.tb00080.x
Stewart K, and Dutton P. (2012). The state of the world’s turtles. The world’s most (and least) threatened sea turtles, Sea Turtle CSI, It’s all in the Genes. Swot. 7: 48.
Hillis DM, and Bull JJ. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic biology, 42(2), 182-192. doi: 10.1093/sysbio/42.2.182
Bolten AB, Bjorndal KA, Martins HR, Dellinger T, Biscoito MJ, Encalada SE, and Bowen BW. (1998). Transatlantic developmental migrations of loggerhead sea turtles demonstrated by mtDNA sequence analysis. Ecological Applications, 8(1): 1-7. doi: 10.1890/1051-0761(1998)008[0001:TDMOLS]2.0.CO;2
Hebert PDN, Cywinska A, Ball SL, and Dewaard JR. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society, 270:313–321. doi:10.1098/rspb.2002.2218
Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, and Bouffard P. (2010). Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome research, 20(7), 908-916. doi:10.1101/gr.102954.109
Zardoya R, and Meyer A. (1998). Complete mitochondrial genome suggests diapsid affinities of turtles. Proceedings of the National Academy of Sciences, 95(24), 14226-14231. doi: 10.1073/pnas.95.24.14226
Shanker K, Ramadevi J, Choudhury BC, Singh L, and Aggarwal RK. (2004). Phylogeography of olive ridley turtles (Lepidochelys olivacea) on the east coast of India: implications for conservation theory. Molecular Ecology, 13(7), 1899-1909. doi: 10.1111/j.1365-294X.2004.02195.x
Franco C, and Hernández-Fernández J. (2012). Description of mtDNA Markers of Loggerhead Turtles from Caribbean Colombia. Marine Turtle Newsletter, 132, 3-4
Dutton PH, Davis SK, Guerra T, and Owens D. (1996). Molecular phylogeny for marine turtles based on sequences of the ND4- leucine tRNA and control regions of mitochondrial DNA. Molecular Phylogenetic Evolution, 5:511–521. doi: 10.1006/mpev.1996.0046
Scotto C. (2006). Análisis filogenético comparativo entre secuencias codificadoras (Cyt b y ATPasa8) y secuencias no codificadoras (D-Loop) del ADN mitocondrial de primates y sus implicancias evolutivas en los homínidos. Horizonte Médico, 6:2.
Adebambo AO. (2009). Mitochondrial DNA D-loop analysis of south western Nigeria. Department of Animal Breeding and Genetics. University of Agriculture. Abeokuta, P.M.B. 2240. Abeokuta. Archives. Archive of Zootecnia, 58, 637-643.
Duchêne S, Archer FI, Vilstrup J, Caballero S, and Morin PA. (2011). Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PloS One, 6(11), e27138. doi: 10.1371/journal.pone.0027138
Miya M, Takeshima H, Endo H Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, and Nishida M. (2003). Major patterns of higher teleostean phylogePengs: A new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 26: 121–138. doi: 10.1016/S1055-7903(02)00332-9
Kim IC, Jung SO, Lee YM, Lee CJ, Park JK., and Lee JS. (2005). The complete mitochondrial genome of the rayfish Raja porosa (Chondrichthyes Rajidae). DNA Sequence, 16:187–194. doi:10.1080/10425170500087975
Jung So, Lee YM, Kartavtsev Y, Park IS, Kim DS, and Lee JS. (2006). The complete mitochondrial genome of the Korean soft-shelled turtle Pelodiscus sinensis (Testudines, Trionychidae). DNA Sequence, 17:471–483.doi: http://dx.doi.org/10.1080/10425170600760091
Parham JF, Feldman CR. and Boore JL. (2006). The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): Description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitocondrial and nuclear DNA. BMC Evoution Biology. 6:11–21. doi:10.1186/1471-2148-6-11
Beltrán G, Acevedo KO, Hernández J, and Daza LA. (2013). Estandarización de la técnica de PCR para amplificar el genoma mitocondrial de las tortugas cabezona (Caretta caretta) y carey (Eretmochelys imbricata) anidantes del Caribe colombiano. Mutis, 3(2), 21-30. doi: http://dx.doi.org/10.21789/22561498.882
Thompson JD, Higgins DG, and Gibson TJ. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680. doi: 10.1093/nar/22.22.4673
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.
Laslett D, and Canbäck B. (2008). ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24; 172-175. PMID: 18033792. doi:10.1093/bioinformatics/btm573
Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, and Adamiak RW. (2012). Automated 3D structure composition for large RNAs. Nucleic Acids Research, gks339. doi: 10.1093/nar/gks339
Tamura K, Nei M, and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035. doi: 10.1073/pnas.0404206101
Nei M, and Kumar S. (2000). Molecular evolution and phylogenetics. Oxford university press.
Hillis DM, and Bull JJ. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic biology,42(2), 182-192. doi: 10.1093/sysbio/42.2.182
Lee JS, Miya M, Lee YS, Kim CG, Park EH, Aoki Y, and Nishida M. (2001). The complete DNA sequence of the mitocondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes Rivulidae) and the first finding of duplication of control region in fish. Gene 280:1–7.
Kumazawa Y, and Nishida M. (1999). Complete mitochondrial DNA Sequences of the green turtle and blue-tailed mole skink: Statistical evidence for Archosaurian affinity of turtles. Molecular Biology and Evolution, 16:784–792.
Florentz C, Sohm B, Tryoen Toth P, Pütz J, and Sissler M. (2003). Human mitochondrial tRNAs in health and disease. Cellular and Molecular Life Sciences CMLS, 60(7), 1356-1375. doi: 10.1007/s00018-003-2343-1
Bagatharia SB, Joshi MN, Pandya RV, Pandit AS, Patel RP, Desai SM, and Saxena AK. (2013). Complete mitogenome of Asiatic lion resolves phylogenetic status within Panthera. BMC genomics, 14(1), 572. doi: 10.1186/1471-2164-14-572
Seutin G, Lang BF, Mindell DP, and Morais R. (1994). Evolution of the WANCY region in amniote mitochondrial DNA. Molecular Biology and Evolution, 11:329–340.
Russell RD, and Beckenbach AT. (2008). Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. Journal of Molecular Evolution, 67(6), 682-695. doi:10.1007/s00239-008-9179-0
Attardi G. (1985). Animal mitochondrial DNA: An extreme example of genetic economy. International Review of Cytology, 93:93–145.
Broughton RE, Milam JE, Roe BA. (2001). The complete sequence of the zebrafish (Danio rerio) mitochondrial genome evolutionary patterns in vertebrate mitochondrial DNA. Genome Research, 11:1958–1967. doi: 10.1101/gr.156801
Florentz C, Sohm B, Tryoen Toth P, Pütz J, and Sissler M. (2003). Human mitochondrial tRNAs in health and disease. Cellular and Molecular Life Sciences CMLS, 60(7), 1356-1375. doi:10.1007/s00018-003-2343-1
Shadel GS, and Clayton DA. (1997). Mitochondrial DNA maintenance in vertebrates. Annual Review of Biochemistry, 66:409–435. doi: 10.1146/annurev.biochem.66.1.409
Widmann J, Harris K, Lozupone C, Wolfson A, and Knight R. (2010). Stable tRNA-based phylogenies using only 76 nucleotides. RNA, 16:1469–1477. doi: 10.1261/rna.726010
Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, and Kunz WS. (1998). Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. In Bioenergetics of the Cell: Quantitative Aspects (pp. 81-100). Springer US.
Zangerl R. (1958). Die oligozanen Meerschildkroten von Glarus. Schweiz. Palaeontol. Abhandl, 73(3): 1-56.
Hendrickson J. (1980). The Ecological Strategies of Sea Turtles. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721. American Zoology, 20:597-608
Bowen BW, Nelson WS, and Avise J. (1993). A molecular phylogeny for marine turtles: Trait mapping, rate assessment, and conservation relevance. Proceedings of the National Academy of Sciences of the United States of America, 90: 5574–5577.
Naro Maciel E, Fitzsimmons N, Amato G. (2008). Evolutionary relationships of marine turtles: A olecular phylogeny based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 49: 659–662. doi: 10.1111/j.1365-294X.1994.tb00080.x
Wyneken J, Lohmann KJ, and Musick JA. (Eds.). (2013). The biology of sea turtles (Vol. 3). CRC Press.
Jung SO, Lee YM, Park TJ, Park HG, Hagiwara A, Leung KMY, Dahms HU, Leew P, and Lee JS. (2006a). The complete mitocondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. Journal of Experimental Marine Biology and Ecology, 325. doi:10.1016/j.jembe.2005.12.047
Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.