Resumen
La eficiencia energética y la sostenibilidad son factores importantes a abordar en el contexto de las ciudades inteligentes. En este sentido, una funcionalidad necesaria consiste en revelar varias preferencias, comportamientos y características de los consumidores individuales, considerando la información de consumo de energía de los metro-contadores inteligentes. En este artículo presentamos una metodología general y un enfoque de agrupamiento en dos niveles teniendo en cuenta las características globales y locales del consumo de energía y la producción de los hogares. Por lo tanto, se pueden determinar los perfiles característicos de carga y producción para cada consumidor y prosumidor, respectivamente. Los resultados obtenidos serán de aplicación general y serán útiles en un contexto de análisis empresarial general.
Aghabozorgi, S., Ying Wah, T., Herawan, T., Jalab, H., Shaygan, M., & Jalali, A. (2014). A hybrid algorithm for clustering of time series data based on affinity search technique. Scientific World Journal, 2014, 1301-1314. https://doi.org/10.1155/2014/562194
Ahmad, T., Chen, H., Wang, J., & Guo, Y. (2018). Review of various modeling techniques for the detection of electricity theft in smart grid environment. Renewable & Sustainable Energy Review, 82(August), 2916-2933. https://doi.org/10.1016/j.rser.2017.10.040
Albert, A., & Rajagopal, R. (2013). Smart meter driven segmentation: What your consumption says about you. IEEE Transaction. Power Systems, 28, 4019-4030. https://doi.org/10.1109/TPWRS.2013.2266122
Alzate, C., Espinoza, M., De Moor, B., & Suykens, J. (2009). Identifying customer profiles in power load time series using spectral clustering. Artificial Neural Networks – ICANN, 2009, LNCS 5769, 315-324. https://doi.org/10.1007/978-3-642-04277-5_32
Ardakanian, O., Koochakzadeh, N., Singh, R., Golab, L., & Keshav, S. (2014). Computing electricity consumption profiles from household smart meter data. In EDBT Workshop on Energy Data Management (pp. 140-147). https://pdfs.semanticscholar.org/11b9/5c1d7861e7932919394f65487b551ab3e1cd.pdf
Binh, P., Ha, N., Tuan, T., & Khoa, L. (2010). Determination of representative load curve based on Fuzzy K-Means. 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, pp. 281-286. https://doi.org/10.1109/PEOCO.2010.5559257
Brockwell, P., & Davis, R. (2002). Introduction to time series and forecasting, 2 ed. Springer Texts in Statistics. New York: Springer Verlag.
Cao, H., Beckel, C., & Staake, T. (2013). Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns, in 39th Annual Conference of the IEEE Industrial Electronics Society (pp. 4733-4738). IECON. https://doi.org/10.1109/IECON.2013.6699900
Capozzoli, A., Piscitelli, M., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336-352. https://doi.org/10.1016/j.energy.2018.05.127
Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68-80. DOI: 10.1016/j.energy.2011.12.031
Defays, D. (1977). An efficient algorithm for a complete link method. The Computer Journal, 20(4), 364-366. https://doi.org/10.1093/comjnl/20.4.364.
Dent, I., Aickelin, U., & Rodden, T. (2011). Application of a clustering framework to UK domestic electricity data. Ukci, 161-166. https://arxiv.org/abs/1307.1079
Espinoza, M., Joye, C., Belmans, R., & DeMoor, B. (2005). Short-Term load forecasting, profile identification, and customer segmentation: A methodology based on periodic time series. IEEE Transaction. Power Systems, 20(3), 1622-1630. https://doi.org/10.1109/TPWRS.2005.852123
European Commission. (2014). Benchmarking smart metering deployment in the EU-27 with a focus on electricity. Reports. Publications Office of the European Union https://ses.jrc.ec.europa.eu/publications/reports/benchmarking-smart-metering-deployment-eu-27-focus-electricity
Fenza, G., Gallo, M., & Loia, V. (2019). Drift-aware methodology for anomaly detection in smart grid. IEEE Access, 7, 9645-9657. https://doi.org/10.1109/ACCESS.2019.2891315
Figueiredo, V., Rodrigues, F. Vale, Z., & Gouveia, J. (2005). An electric energy consumer characterization framework based on data mining techniques. IEEE Transaction. Power Systems, 20(2), 596-602. https://doi.org/10.1109/TPWRS.2005.846234
Flath, C., Nicolay, D., Conte, T., Van Dinther, C., & Filipova-Neumann, L. (2012). Cluster analysis of smart metering data: An implementation in practice. Business & Information Systems Engineering, 4, 31-39. https://doi.org/10.1007/s12599-011-0201-5
Funde, N., Dhabu, M., Paramasivam, A., & Deshpande, P. (2019). Motif-based association rule mining and clustering technique for determining energy usage patterns for smart meter data. Sustainable Cities Society, 46(January), 101415. https://doi.org/10.1016/j.scs.2018.12.043
Giordano, V., Gangale, F., Fulli, G., & Sánchez, M. (2011). Smart grids projects in Europe: Lessons learned and current developments. Federal Energy Regulatory Commission. https://ses.jrc.ec.europa.eu/sites/ses/files/documents/smart_grid_projects_in_europe.pdf
Hossain, J., Kabir, A., Rahman, M., Kabir, B., & Islam, R. (2011). Determination of typical load profile of consumers using fuzzy c-means clustering algorithm. Int. J. Soft Comput. Eng., 1(5), 169-173. https://es.scribd.com/document/349605721/Determination-of-Typical-Load-Profile-of-Consumers-Using-Fuzzy-C-Means-Clustering-Algorithm
Hübner, M., & Prüggler, N. (2011). Smart grids initiatives in Europe - Country snapshots and country fact sheets. JRC Reference Reports. Austrian Energy Agency. https://ses.jrc.ec.europa.eu/sites/ses/files/documents/smart_grid_projects_in_europe.pdf
Iglesias, F., & Kastner, W. (2013). Analysis of similarity measures in times series clustering for the discovery of building energy patterns. Energies, 6, 579-597. https://doi.org/10.3390/en6020579
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern., 43(1), 59-69. https://doi.org/10.1007/BF00337288
Lai, C.-P., Chung, P.-C., & Tseng, V. S. (2010). A novel two-level clustering method for time series data analysis. Expert Systems with Applications, 37(9), 6319-6326. https://doi.org/10.1016/j.eswa.2010.02.089
Lavin, A., & Klabjan, D. (2014). Clustering time ‐ series energy data from smart meters. Energy Efficiency, 8(4), 1-9. https://doi.org/10.1007/s12053-014-9316-0
Lee, T., Haben, S., & Grindrod, P. (2014). Modelling the electricity consumption of small to medium enterprises. In The 18th European Conference on Mathematics for Industry Conference (pp. 1-7). Taormina, Italy: ECMI.
Losa, I., De Nigris, M., & Van, T. (2013). Analysis of the on-going research and demonstration efforts on smart grids in Europe, 22nd International Conference on Electricity Distribution, June, 10-13. https://doi.org/10.1049/cp.2013.0958
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium Mathematical Statistics and Probability, 1, 281-297.
McLoughlin, F., Duffy, A., & Conlon, M. (2012). Analysing domestic electricity smart metering data using self organising maps. In CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, pp. 319-319. https://doi.org/10.1049/cp.2012.0865
Mutanen, A., Ruska, M., Repo, S., & Järventausta, P. (2011). Customer classification and load profiling method for distribution systems. IEEE Trans. Power Deliv., 26, 1755-1763. https://doi.org/10.1109/TPWRD.2011.2142198
Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classification of time-series data. International Journal of Computer Research, 10, 49-61. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.9555
Oates, T., Firoiu, L., & Cohen, P. (1999). Clustering time series with hidden Markov Models and dynamic time warping. In Proceedings of the IJCAI-99 Workshop on Neural, symbolic and reinforcement learning methods for sequence learning (pp. 17-21).
Räsänen, T., & Kolehmainen, M. (2009). Feature-based clustering for electricity use time series data. In 9th International Conference, ICANNGA 2009, LNCS 5495, 401-412. https://doi.org/10.1007/978-3-642-04921-7_41
Räsänen, T., Voukantsis, D., Niska, H., Karatzas, K., & Kolehmainen, M. (2010). Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Appl. Energy, 87, 3538-3545. https://doi.org/10.1016/j.apenergy.2010.05.015
Renner, S., & Heinemann, C. (2011). European Smart Metering Landscape Report, 2(February), 168 p. https://www.sintef.no/globalassets/project/smartregions/d2.1_european-smart-metering-landscape-report_final.pdf
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8), 888-905. https://doi.org/10.1109/34.868688
Wang, X., Smith, K., & Hyndman, R. (2006). Characteristic-based clustering for time series data. Data Min. Knowl. Discov., 13, 335-364. https://doi.org/10.1007/s10618-005-0039-x
Wang, X., Smith, K., Hyndman, R., & Alahakoon, D. (2004). A scalable method for time series clustering. Research of Monash University. Victoria, Australia: Monash University. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.155.207
Warren Liao, T. (2007). A clustering procedure for exploratory mining of vector time series. Pattern Recognit., 40, 2550-2562. https://doi.org/10.1016/j.patcog.2007.01.005
Zhang, X., Liu, J., Du, Y., & Lv, T. (2011). A novel clustering method on time series data. Expert Systems Applications, 38, 11891-11900. https://doi.org/10.1016/j.eswa.2011.03.081
Cuadernos de Administración se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional. Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente en formato digital, siempre que se reconozca el nombre de los autores y a la Pontificia Universidad Javeriana. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, para cualquier finalidad (incluso comercial), siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios. La Pontificia Universidad Javeriana no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad.
El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.