Publicado abr 28, 2020


Google Scholar
Search GoogleScholar

Leticia Arco García

Gladys María Casas Cardoso

Ann Nowé



La eficiencia energética y la sostenibilidad son factores importantes a abordar en el contexto de las ciudades inteligentes. En este sentido, una funcionalidad necesaria consiste en revelar varias preferencias, comportamientos y características de los consumidores individuales, considerando la información de consumo de energía de los metro-contadores inteligentes. En este artículo presentamos una metodología general y un enfoque de agrupamiento en dos niveles teniendo en cuenta las características globales y locales del consumo de energía y la producción de los hogares. Por lo tanto, se pueden determinar los perfiles característicos de carga y producción para cada consumidor y prosumidor, respectivamente. Los resultados obtenidos serán de aplicación general y serán útiles en un contexto de análisis empresarial general.


Clustering, time series, smart meteringAgrupamiento, series de tiempo, medición inteligenteAgrupação, séries de tempo, medição inteligente

Aghabozorgi, S., Saybani, M., & Wah, T. (2012). Incremental clustering of time-series by fuzzy clustering. Journal of Information Science and Engineering, 28, 671-688.
Aghabozorgi, S., Ying Wah, T., Herawan, T., Jalab, H., Shaygan, M., & Jalali, A. (2014). A hybrid algorithm for clustering of time series data based on affinity search technique. Scientific World Journal, 2014, 1301-1314.
Ahmad, T., Chen, H., Wang, J., & Guo, Y. (2018). Review of various modeling techniques for the detection of electricity theft in smart grid environment. Renewable & Sustainable Energy Review, 82(August), 2916-2933.
Albert, A., & Rajagopal, R. (2013). Smart meter driven segmentation: What your consumption says about you. IEEE Transaction. Power Systems, 28, 4019-4030.
Alzate, C., Espinoza, M., De Moor, B., & Suykens, J. (2009). Identifying customer profiles in power load time series using spectral clustering. Artificial Neural Networks – ICANN, 2009, LNCS 5769, 315-324.
Ardakanian, O., Koochakzadeh, N., Singh, R., Golab, L., & Keshav, S. (2014). Computing electricity consumption profiles from household smart meter data. In EDBT Workshop on Energy Data Management (pp. 140-147).
Binh, P., Ha, N., Tuan, T., & Khoa, L. (2010). Determination of representative load curve based on Fuzzy K-Means. 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, pp. 281-286.
Brockwell, P., & Davis, R. (2002). Introduction to time series and forecasting, 2 ed. Springer Texts in Statistics. New York: Springer Verlag.
Cao, H., Beckel, C., & Staake, T. (2013). Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns, in 39th Annual Conference of the IEEE Industrial Electronics Society (pp. 4733-4738). IECON.
Capozzoli, A., Piscitelli, M., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336-352.
Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68-80. DOI: 10.1016/
Defays, D. (1977). An efficient algorithm for a complete link method. The Computer Journal, 20(4), 364-366.
Dent, I., Aickelin, U., & Rodden, T. (2011). Application of a clustering framework to UK domestic electricity data. Ukci, 161-166.
Espinoza, M., Joye, C., Belmans, R., & DeMoor, B. (2005). Short-Term load forecasting, profile identification, and customer segmentation: A methodology based on periodic time series. IEEE Transaction. Power Systems, 20(3), 1622-1630.
European Commission. (2014). Benchmarking smart metering deployment in the EU-27 with a focus on electricity. Reports. Publications Office of the European Union
Fenza, G., Gallo, M., & Loia, V. (2019). Drift-aware methodology for anomaly detection in smart grid. IEEE Access, 7, 9645-9657.
Figueiredo, V., Rodrigues, F. Vale, Z., & Gouveia, J. (2005). An electric energy consumer characterization framework based on data mining techniques. IEEE Transaction. Power Systems, 20(2), 596-602.
Flath, C., Nicolay, D., Conte, T., Van Dinther, C., & Filipova-Neumann, L. (2012). Cluster analysis of smart metering data: An implementation in practice. Business & Information Systems Engineering, 4, 31-39.
Funde, N., Dhabu, M., Paramasivam, A., & Deshpande, P. (2019). Motif-based association rule mining and clustering technique for determining energy usage patterns for smart meter data. Sustainable Cities Society, 46(January), 101415.
Giordano, V., Gangale, F., Fulli, G., & Sánchez, M. (2011). Smart grids projects in Europe: Lessons learned and current developments. Federal Energy Regulatory Commission.
Hossain, J., Kabir, A., Rahman, M., Kabir, B., & Islam, R. (2011). Determination of typical load profile of consumers using fuzzy c-means clustering algorithm. Int. J. Soft Comput. Eng., 1(5), 169-173.
Hübner, M., & Prüggler, N. (2011). Smart grids initiatives in Europe - Country snapshots and country fact sheets. JRC Reference Reports. Austrian Energy Agency.
Iglesias, F., & Kastner, W. (2013). Analysis of similarity measures in times series clustering for the discovery of building energy patterns. Energies, 6, 579-597.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern., 43(1), 59-69.
Lai, C.-P., Chung, P.-C., & Tseng, V. S. (2010). A novel two-level clustering method for time series data analysis. Expert Systems with Applications, 37(9), 6319-6326.
Lavin, A., & Klabjan, D. (2014). Clustering time ‐ series energy data from smart meters. Energy Efficiency, 8(4), 1-9.
Lee, T., Haben, S., & Grindrod, P. (2014). Modelling the electricity consumption of small to medium enterprises. In The 18th European Conference on Mathematics for Industry Conference (pp. 1-7). Taormina, Italy: ECMI.
Losa, I., De Nigris, M., & Van, T. (2013). Analysis of the on-going research and demonstration efforts on smart grids in Europe, 22nd International Conference on Electricity Distribution, June, 10-13.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium Mathematical Statistics and Probability, 1, 281-297.
McLoughlin, F., Duffy, A., & Conlon, M. (2012). Analysing domestic electricity smart metering data using self organising maps. In CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, pp. 319-319.
Mutanen, A., Ruska, M., Repo, S., & Järventausta, P. (2011). Customer classification and load profiling method for distribution systems. IEEE Trans. Power Deliv., 26, 1755-1763.
Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classification of time-series data. International Journal of Computer Research, 10, 49-61.
Oates, T., Firoiu, L., & Cohen, P. (1999). Clustering time series with hidden Markov Models and dynamic time warping. In Proceedings of the IJCAI-99 Workshop on Neural, symbolic and reinforcement learning methods for sequence learning (pp. 17-21).
Räsänen, T., & Kolehmainen, M. (2009). Feature-based clustering for electricity use time series data. In 9th International Conference, ICANNGA 2009, LNCS 5495, 401-412.
Räsänen, T., Voukantsis, D., Niska, H., Karatzas, K., & Kolehmainen, M. (2010). Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Appl. Energy, 87, 3538-3545.
Renner, S., & Heinemann, C. (2011). European Smart Metering Landscape Report, 2(February), 168 p.
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8), 888-905.
Wang, X., Smith, K., & Hyndman, R. (2006). Characteristic-based clustering for time series data. Data Min. Knowl. Discov., 13, 335-364.
Wang, X., Smith, K., Hyndman, R., & Alahakoon, D. (2004). A scalable method for time series clustering. Research of Monash University. Victoria, Australia: Monash University.
Warren Liao, T. (2007). A clustering procedure for exploratory mining of vector time series. Pattern Recognit., 40, 2550-2562.
Zhang, X., Liu, J., Du, Y., & Lv, T. (2011). A novel clustering method on time series data. Expert Systems Applications, 38, 11891-11900.
Cómo citar
Arco García, L., Casas Cardoso, G. M., & Nowé, A. (2020). Metodología de agrupación en dos niveles para una medición de datos inteligente. Cuadernos De Administración, 33.
Especial Innovación en la gestión del conocimiento a través de metodologías