Un sistema de apoyo a la toma de decisiones para planificar la introducción de nuevos productos en las cadenas de suministro de alimentos perecederos
HTML Full Text (Inglés)
PDF (Inglés)
XML (Inglés)

Palabras clave

Sistemas de apoyo a la toma de decisiones
introducción de nuevos productos
cadena de suministro agrícola
producción y distribución planificada de productos perecibles

Cómo citar

Ahumada Valenzuela, O., Villalobos, J. R., Leyva López, J. C., & Solano Noriega, J. J. (2020). Un sistema de apoyo a la toma de decisiones para planificar la introducción de nuevos productos en las cadenas de suministro de alimentos perecederos. Cuadernos De Administración, 33. https://doi.org/10.11144/Javeriana.cao33.adssp
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Esta investigación desarrolla una propuesta inicial de un Sistema de Apoyo a la toma de decisiones –DSS, siglas en inglés– para la planificación y distribución en la agricultura de nuevos productos perecederos. Este sistema está basado en un enfoque jerárquico, que puede ser implementado en las empresas como un módulo planificado o como un sistema independiente para planificar la producción de la cosecha. En este artículo se resalta la importancia del DSS para las pequeñas y medianas empresas, o para grupos de pequeños cultivadores que necesitan mejorar la coordinación entre sus cultivos y sus decisiones de mercado. El DSS cubre las decisiones estratégicas, tácticas y operacionales para cada estación, centrándose en la introducción de nuevos productos. El objetivo del DSS es incrementar la competitividad de los agricultores en un mercado altamente variable y complejo. El sector agrícola aún necesita evolucionar para satisfacer las demandas crecientes, entender los gustos particulares de los nuevos consumidores y evaluar los requerimientos de los nuevos actores.

HTML Full Text (Inglés)
PDF (Inglés)
XML (Inglés)

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical Programming, 106(3), 433-446. https://doi.org/10.1007/s10107-005-0638-8
Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. https://doi.org/10.1016/j.ejor.2008.02.014
Ahumada, O., & Villalobos, J. R. (2011). A tactical model for planning the production and distribution of fresh produce. Annals of Operations Research, 190(1), 339-358. https://doi.org/10.1007/s10479-009-0614-4
Ahumada, O., Villalobos, J. R., & Mason, A. N. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems, 112, 17-26. https://doi.org/10.1016/j.agsy.2012.
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working Papers 12-03. Food and Agriculture Organization of the United Nations. https://doi.org/10.22004/ag.econ.288998
Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369-384. https://doi.org/10.1016/J.COR.2016.10.012
Banasik, A., Bloemhof-Ruwaard, J. M., Kanellopoulos, A., Claassen, G. D. H., & van der Vorst, J. G. A. (2018). Multi-criteria decision making approaches for green supply chains: A review. Flexible Services and Manufacturing Journal, 30(3), 366-396. https://doi.org/10.1007/s10696-016-9263-5
Burstein, F., & Holsapple, C. W. (2008). Handbook on decision support systems 2: Variations. Springer Science & Business Media.
Dantzig, G. B. (2010). Linear programming under uncertainty. In Stochastic programming (pp. 1-11). Springer.
Farahani, P., Grunow, M., & Günther, H.-O. (2012). Integrated production and distribution planning for perishable food products. Flexible Services and Manufacturing Journal, 24(1), 28-51.
Flores, H., Villalobos, J. R., Ahumada, O., Uchanski, M., Meneses, C., & Sanchez, O. (2019). Use of supply chain planning tools for efficiently placing small farmers into high-value, vegetable markets. Computers and Electronics in Agriculture, 157, 205-217.
Glen, J. J. (1987). Mathematical models in farm planning: A survey. Operations Research, 35(5), 641-666.
Grunert, K. G., Jensen, B. B., Sonne, A.-M., Brunsø, K., Byrne, D. V, Clausen, C. (2008). User-oriented innovation in the food sector: Relevant streams of research and an agenda for future work. Trends in Food Science & Technology, 19(11), 590-602.
Kader, A. A. (2002). Postharvest technology of horticultural crops (Vol. 3311). University of California Agriculture and Natural Resources.
Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194. https://doi.org/10.1016/J.IJPE.2019.05.022
Kaufman, P. R. (2000). Understanding the dynamics of produce markets consumption and consolidation grow. London: Diane Publishing.
Linnemann, A., Hendrix, E., Apaiah, R., & van Boekel, T. (2015). Food chain design using multi criteria decision making, an approach to complex design issues. NJAS-Wageningen Journal of Life Sciences, 72-73, 13-21. http://dx.doi.org/10.1016/j.njas.2014.10.002
Little, C., Aqueveque, C., & Aguilera, J. M. (2015). Producer–consumer misalignment as a possible cause for new food failure: empirical evidence from Chile. Journal of international food & agribusiness marketing, 27(3), 228-253. https://doi.org/10.1080/08974438.2014.940120
Lowe, T. & Preckel, P. (2004). Decision technologies for agribusiness problems: A brief review of selected literature and a call for research. Manufacturing & Service Operations Management, 6(3), 201-208. https://doi.org/10.1287/msom.1040.0051
Moskowitz, H. R., Saguy, I. S., & Straus, T. (2009). An integrated approach to new food product development. London: CRC Press.
Perosio, D., McLaughlin, E., Cuellar, S., & Park, K. (2001). Supply chain management in the produce industry. New York: Cornell University. https://doi.org/10.22004/ag.econ.122645
Rae, A. N. (1971). An empirical application and evaluation of discrete stochastic programming in farm management. American Journal of Agricultural Economics, 53(4), 625-638. https://doi.org/10.2307/1237827
Rae, A. N. (1977). Crop management economics. London: Crosby Lockwood Staples. 525 p.
Rezaeian, J., Haghayegh, S., & Mahdavi, I. (2016). Designing an integrated production/distribution and inventory planning model of fixed-life perishable products. Journal of Optimization in Industrial Engineering, 9(19), 47-60. https://doi.org/10.22094/JOIE.2016.229
Sagarpa. (2010). Retos y oportunidades del sistema agroalimentario de México en los próximos 20 años. Working Paper, s.n. http://www.sagarpa.gob.mx/agronegocios/Documents/pablo/retosyoportunidades.pdf
Vidal, C. J., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and transportation cost allocation. European Journal of Operational Research, 129(1), 134-158. https://doi.org/10.1016/S0377-2217(99)00431-2
Villalobos, J. R., Soto-Silva, W. E., González-Araya, M. C., & González–Ramirez, R. G. (2019). Research directions in technology development to support real-time decisions of fresh produce logistics: A review and research agenda. Computers and Electronics in Agriculture, 167, 105092. https://doi.org/10.1016/J.COMPAG.2019.105092
Zuurbier, P. J. (1999). Supply chain management in the fresh produce industry: A mile to go? Journal of Food Distribution Research, 30(856-2016–57418), 20-30. https://doi.org/ 10.22004/ag.econ.26781
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2020 Omar Ahumada Valenzuela, Jesus Rene Villalobos, Juan Carlos Leyva López, Jesús Jaime Solano Noriega