Carmen María Fernández García https://orcid.org/0000-0001-6314-355X

Susana Torío-López https://orcid.org/0000-0001-5004-2338

Omar García-Pérez https://orcid.org/0000-0002-7001-2491

Mercedes Inda-Caro https://orcid.org/0000-0003-4752-3258


Nuestro objetivo en este trabajo es analizar el influjo de las expectativas parentales y estereotipos de género en las creencias de autoeficacia, resultados e intereses de los alumnos. La muestra se encuentra constituida por 2364 estudiantes en el último año de la Educación Secundaria Obligatoria en España. Para el análisis de los datos se han combinado análisis descriptivos, comparación de medias y modelos de ecuaciones estructurales.  Los resultados indican que los chicos perciben más apoyo parental que las chicas en tecnología e informática. En relación a los estereotipos de género, los chicos los perciben más, tanto en tecnología como en informática y ciencias. En nuestra muestra ni el apoyo parental ni los estereotipos de género tienen una influencia directa en los resultados e intereses. Sin embargo, las creencias de autoeficacia sí la tienen. 



elecciones vocacionales, género, apoyo parental, asignaturas STEM, educaci´ón secundaria obligatoria

Ashby, J. S., & Schoon, I. (2010). Career success: the role of teenage career aspirations, ambition value and gender in predicting adult social status and earnings. Journal of Vocational Behavior, 77(3), 350-360. https://doi.org/ 10.1016/j.jvb.2010.06.006

Bleeker, M. M., & Jacobs, J. (2004). Achievement in math and science: do mothers’ beliefs matter 12 years later? Journal of Educational Psychology, 96(1), 97-109. https://doi.org/10.1037/0022-0663.96.1.97

Britner, G., & Pajares, F. (2001). Self-efficacy beliefs, motivation, race, and gender in middle school science. Journal of Women and Minorities in Science and Engineering, 7(4), 269–283. https://doi.org/10.1615/JWomenMinorScienEng.v7.i4.10

Britner, S. L., & Pajares, F. (2006). Sources of Science Self-Efficacy Beliefs of Middle School Students. Journal of Research in Science Teaching, 43(5), 485-499. https://doi.org/10.1002/tea.20131

Buday, S. K., Stake, J., & Peterson, Z. (2012). Gender and the choice of a science career: the impact of social support and possible selves. Sex Roles: A Journal of Research, 66(3-4), 197-209. https://doi.org/10.1007/sl1199-011-0015-4

Byars-Winston, A., & Fouad, N. A. (2008). Math and science social cognitive variables in college students. Contributions of contextual factors in predicting goals. Journal of Career Assessment, 16(4), 425-440. https://doi.org/10.1177/1069072708318901

Clegg, S., & Trayhurn, D. (1999). Gender and computing: not the same old problem. British Educational Research Journal, 26(1), 75-89. https://doi.org/10.1080/014119200109525

Dietrich, J., & Kracke, B. (2009). Career – specific parental behaviors in adolescents’ development. Journal of Vocational Behavior, 75(2), 109-119. https://doi.org/10.1016/j.jvb.2009.03.005

Duffy, R. D., Douglass, R. P., Autin, K. L., & Allan, B. A. (2014). Examining predictors and outcomes of a career calling among undergraduate students. Journal of Vocational Behavior, 85(3), 309-318. https://doi.org/10.1016/j.jvb.2014.08.009

EACEA/Eurydice. (2010). Gender Differences in Educational Outcomes: Study on the Measures Taken and the Current Situation in Europe. Brussels: Eurydice. Retrieved from http://eacea.ec.europa.eu/education/eurydice/documents/thematic_reports/120EN.pdf

EACEA/Eurydice. (2012). Developing Key Competences at School in Europe: Challenges and Opportunities for Policy. Eurydice Report. Luxembourg: Publications Office of the European Union. Retrieved from http://eacea.ec.europa.eu/education/eurydice/documents/thematic_reports/145EN.pdf

Erwin, L., & Maurutto, P. (1998). Beyond access: considering gender deficits in science education. Gender and Education, 10(1), 51-69. https://doi.org/10.1080/09540259821096

Fouad, N. A., & Smith, P. L. (1996). A test of a social cognitive model for middle school students: math and science. Journal of Counseling Psychology, 43(3), 338-346. https://doi.org//10.1037/0022-0167.43.3.338

Fouad, F., Smith, P. L., & Enochs, I. (1997). Reliability and validity evidence for the middle school self-efficacy scale. Measurement and Evaluation in Counseling and Development, 30(1), 17-31. https://doi.org/10.1037/t20421-000

Fouad, N., Kantamneni, N., Smothers, M., Chen, Y., Fitzpatrick, M., & Terry, S. (2008). Asian American career development: a qualitative analysis. Journal of Vocational Behavior, 72(1), 43-59. https://doi.org/10.1016/j.jvb.2007.10.002

Fouad, N. A., Hackett, G., Smith, P. L., Kantamneni, N., Fitzpatrick, M., Haag, S., & Spencer, D. (2010). Barriers and supports for continuing in mathematics and science: Gender and educational level differences. Journal of Vocational Behavior, 77, 361–373. https://doi.org/10.1016/j.jvb.2010.06.004

Fredricks, J. A., & Eccles, J. S. (2002). Children’s competence and value beliefs from childhood through adolescence: growth trajectories in two male-sex-typed domains. Developmental Psychology, 38(4), 519-533. https://doi.org/10.1037/0012-1649.38.4.519

Gniewosz, B., Eccles, J., & Noack, P. (2015). Early adolescents' development of academic self-concept and intrinsic task value: The role of contextual feedback. Journal of Research on Adolescence, 25(3), 459-473. https://doi.org/10.1111/jora.12140

Gunderson, E.A.; Ramirez, G., Levine, S., & Beilock, S. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3-4), 153-166. https://doi.org/10.1007/s11199-011-9996-2

Hanna, G. (1994). Cross-cultural gender differences in mathematics education. International Journal of Educational Research, 21(4), 417-426. https://doi.org/10.1016/S0883-0355(06)80030-3

Hyde, J., Lindberg, S. M., Linn, M., Ellis, A., & Williams, C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494-496. https://doi.org/10.1126/science.1160364

Hoyle, R. (1995). Structural equation modeling. Concepts, Issues and Applications. London: Sage.

Inda, M., Rodríguez, C., & Peña, J. V. (2013). Gender differences in applying social cognitive career theory in engineering students. Journal of Vocational Behavior, 83(3), 346-365. https://doi.org/10.1016/j.jvb.2013.06.010

Inda-Caro, M., Rodríguez-Menéndez, C., & Peña-Calvo, J. V. (2016). Spanish High School Students’ interests in Technology: applying Social Cognitive Career Theory. Journal of Career Development, 43(4), 291-307. https://doi.org/10.1177/0894845315599253

Jacobs, J. E. (1991). Influence of gender stereotypes on parent and child mathematics attitudes. Journal of Educational Psychology, 83(4), 518-527. https://doi.org/10.1037/0022-0663.83.4.518

Jacobs, J.E., Chhin, C.S. & Bleeker, M.M. (2006). Enduring links: parent’s expectations and their young adult children’s gender-typed occupational choices. Educational Research and Evaluation, 12(4), 395-407. doi: 10.1080/13803610600765851

Jacobs, J. E., Davis-Kean, P., Bleeker, M., Eccles, J. S. & Malanchuk, O. (2005). “I can, but I don’t want to”. The impact of parents, interests and activities on gender differences in math. In A. M. Gallagher & J. C. Kaufmank. (Eds.), Gender differences in mathematics. An integrative psychological approach (pp. 246-263). New York, NY: Cambridge University Press.

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28, 563-575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x

Lent, R. W., Brown, S. D., Schmidt, J., Brenner, B., Lyons, H., & Treistman, D. (2003). Relation of contextual supports and barriers to choice behavior in engineering majors: test of alternative social cognitive models. Journal of Counseling Psychology, 50(4), 458-465. https://doi.org/10.1037/0022-0167.50.4.458

Lent, R.W., Brown, S.D., Sheu, H., Schmidt, J., Brenner, B. R., Gloster, C.S., Wilkins, G., … Treistman, D. (2005). Social cognitive predictors of academic interests and goals in engineering: utility for women and students at historically black universities. Journal of Counseling Psychology, 52(1), 84-92. https://doi.org/10.1037/0022-0167.52.1.84

Lent, R. W., Sheu, H, Miller, M., Cusick, M., Penn, L., & Truong, N. (2018). Predictors of science, technology, engineering, and mathematics choice options: a meta-analytic path analysis of the social-cognitive choice model by gender and race/ethnicity. Journal of Counseling Psychology, 65(1), 17-35. https://doi.org/10.1037/cou0000243

Lindley, L. D. (2005). Perceived barriers to career development in the context of social cognitive career theory. Journal of Career Assessment, 13(3), 271-287. https://doi.org/10.1177/1069072705274953

Linver, M. R., & Davis-Kean, P. E. (2005). The slippery slope: what predicts math grades in middle and high school? New Directions for Child and Adolescent Development, 110, 49-64. https://doi.org/10.1002/cd.149

Marbá, A., & Solsona, N. (2012). Identificación e interpretación y las posibles desigualdades formativas en ciencias de chicos y chicas en la educación obligatoria y el bachillerato [Identification and interpretation of possible differences in science education between boys and girls in compulsory secondary education and upper secondary education]. Cultura y educación, 24(3), 289-303. https://doi.org/10.1174/113564012802845659

Ministerio de Educación y Formación Profesional de España. (2019). Scientix. Retrieved from http://educalab.es/proyectos/scientix

Navarro, R., Flores, L., & Worthington, R. (2007). Mexican American middle school students’ goal intentions in mathematics and science: a test of social cognitive career theory. Journal of Counseling Psychology, 54(3), 320-335. https://doi.org/10.1037/0022-0167.54.3.320

Noack, P., Kracke, B., Gniewosz, B., & Dietrich, J. (2010). Parental and school effects on students’ occupational exploration: a longitudinal and multilevel analysis. Journal of Vocational Behavior, 77(1), 50-57. https://doi.org/10.1016/j.jvb.2010.02.006

Peña-Calvo, J. V., Inda-Caro, M., Rodríguez-Menéndez, C., & Fernández-García, C. M. (2016). Perceived supports and barriers for career development for second-year STEM students. Journal of Engineering Education, 105(2), 341-365. https://doi.org/10.1002/jee.20115

Räty, H., & Kasanen, K. (2007). Gendered views of ability in parents’ perceptions of their children’s academic competencies. Sex Roles, 56(1-2), 117-124. https://doi.org/10.1007/s11199-006-9153-5

Rodríguez-Menéndez, M. C., Torío-López, S., & Fernández-García, C.M. (2006). El impacto del género en las elecciones académicas de los estudiantes que finalizan la ESO. Revista Española de Orientación y Psicopedagogía, 17(2), 239–260. https://doi.org/10.5944/reop.vol.17.num.2.2006.11351

Sáinz, M., & Eccles, J. (2012). Self – concept of computer and math ability: gender implications across time and within ICT studies. Journal of Vocational Behavior, 80(2), 486-499. https://doi.org/10.1016/j.jvb.2011.08.005

Sáinz, M., Palmén, R., & García-Cuesta, S. (2012). Parental and secondary school teachers' perceptions of ICT and their role in the choice of studies. Sex Roles, 66(3-4), 235-249. https://doi.org/10.1007/s11199-011-0055-9.

Scott, A. B., & Mallinckrodt, B. (2005). Parental emotional support, science self-efficacy, and choice of science major in undergraduate women. The Career Development Quarterly, 53(3), 263-273. https://doi.org/10.1002/j.2161-0045.2005.tb00995.x

Simpkins, S., Davis-Kean, P., & Eccles, J. (2005). Parents’ socializing behaviour and children’s participation in math, science and computer out-of-school activities. Applied Developmental Science, 9(1), 14-30. https://doi.org/10.1207/s1532480xads0901_3

Tennenbaum, H., & Leaper, C. (2003). Parent-child conversations about science: the socialization of gender inequities? Developmental Psychology, 39(1), 34-47. https://doi.org/10.1037/0012-1649.39.1.34

Tiedemann, J. (2000). Parent’s gender stereotypes and teacher’s beliefs as predictors of children’s concept of their mathematical ability in elementary school. Journal of Educational Psychology, 92(1), 144-151. https://doi.org/10.1037/0022-0663.92.1.144

Vázquez, A., & Manassero, M. A. (2009). Patrones actitudinales de la vocación científica y tecnológica en chicas y chicos de Secundaria [Attitudinal patterns of scientific and technological talent in girls and boys in Secondary Education]. Revista Iberoamericana de Educación, 50(4), 1-12. https://doi.org/10.35362/rie5041879

Watt, H.; Eccles, J., & Durik, A. (2006). The leaky mathematics pipeline for girls. A motivational analysis of high school enrolments in Australia and the USA. Equal Opportunities International, 25(8), 642-659. https://doi.org/10.1108/02610150610719119

Wigfield, A., Eccles, J., Yoon, K., Harold, R., Arbreton, A., Freedman-Doan, C., & Blumenfeld, P. (1997). Change in children’s competence beliefs and subjective task values across the elementary school years: a 3-Year study. Journal of Educational Psychology, 89(3), 451-469. https://doi.org/10.1037/0022-0663.89.3.451

Zeldin, A. L., Britner, S. L., & Pajares, F. (2008). A comparative study of the self-efficacy beliefs of successful men and women in mathematics, science and technology careers. Journal of Research in Science Teaching, 45(9), 1036-1058. https://doi.org/10.1002/tea.20195

Zeldin, A. L., & Pajares, F. (2000). Against the odds: self-efficacy beliefs of women in mathematical, scientific and technological careers. American Educational Research Journal, 37(1), 215-246. https://doi.org/10.3102/0002831203700121
Cómo citar
Fernández García, C. M., Torío-López, S., García-Pérez, O., & Inda-Caro, M. (2019). Apoyo parental, creencias de autoeficacia, resultados esperados e intereses en Ciencia, Tecnología, Ingeniería y Matemáticas (STEM). Universitas Psychologica, 18(2), 1-15. https://doi.org/10.11144/Javeriana.upsy18-2.psse
Artículos más leídos del mismo autor/a