Published Nov 9, 2018



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Y Maritza Zapata http://orcid.org/0000-0002-2768-0566

Angelica Galviz-Quezada http://orcid.org/0000-0002-5476-7157

Víctor Manuel Osorio Echeverri http://orcid.org/0000-0002-9134-2713

##plugins.themes.bootstrap3.article.details##

Abstract

Microbial cellulases are industrially used enzymes that catalyze the cleavage of the glycosidic bonds of cellulose. This hydrolysis yields sugars that can be used in processes such as bioethanol production. These enzymes are mainly produced by fungi belonging to the genus Trichoderma via submerged or solid state fermentation with cellulosic materials as substrates. Recent publications have increasingly demonstrated that alternatives to T.reesei enzymes in the production of second generation biofuels exist. Here, cellulolytic activities of crude extracts obtained from a native isolate of T.asperellum from coffe pulp and a strain of T.reesei were evaluated. Solid state fermentations were performed using paper and sawdust as substrates. The activities were measured after 12 days of incubation. The extracts obtained from T.reesei showed higher cellulase and endoglucanase activities (6.5 and 5.8 U/g) than those obtained using T.asperellum (5.6 and 4.1 U/g) with paper as substrate. There were no significant differences between isolates when grownon sawdust. It was possible to verify that native T.asperellum was able to produce cellulases on lignocellulosic material such as moistened paper and sawdust without having undergone a chemical pretreatment.

Keywords

Cellulases, cellulolytic extracts, solid state fermentation, Trichoderma

References
[1] Horton HR, Moran LA, Scrimgeour KG, Perry MD, Rawn JD. Principles of Biochemistry, 4th ed, Pearson Prentice Hall, New Jersey, USA, 2006.

[2] Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production, BMC Biotechnology, 14: 1-12, 2014.
doi: 10.1186/s12896-014-0103-y

[3] Damisa D, Sule EI, Moneme S. Cellulase production from waste paper using Trichoderma species isolated from rhizospheric soil, African Journal of Biotechnology, 11: 16342-16346, 2012.
doi: 10.5897/AJB12.2555

[4] Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation, Process Biochemistry, 50: 1327-1341, 2015.
doi: 10.1016/j.procbio.2015.05.017

[5] Fang H, Xia L. Cellulase production by recombinant Trichoderma reesei and its application in enzymatic hydrolysis of agricultural residues, Fuel, 143: 211-216, 2015.
doi: 10.1016/j.fuel.2014.11.056

[6] Sartori T, Tibolla H, Prigol E, Colla LM, Vieira Costa JA, Bertolin TE. Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride, BioMed Research International, 2015: 1-9, 2015.
doi: 10.1155/2015/342716

[7] Lopes Ferreira N, Margeot A, Blanquet S, Berrin J-G. Use of cellulases from Trichoderma reesei in the twenty first century - Part I: Current industrial uses and future applications in the production of second ethanol generation, in Gupta VK, Schmoll M, Herrera- Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, Biotechnology
and Biology of Trichoderma, Chapter 17: 245-261, 2014.
doi: 10.1016/B978-0-444-59576-8.00017-5

[8] Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C, Druzhinina I. Biodiversity of the genus Hypocrea/Trichoderma in different habitats, in Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, Biotechnology and Biology of Trichoderma, Chapter 1: 3-24, 2014.
doi: 10.1016/B978-0-444-59576-8.00001-1

[9] Ma L, Li C, Yang Z, Jia W, Zhang D, Chen S. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation, Journal of Biotechnology, 166: 192-197, 2013.
doi: 10.1016/j.jbiotec.2013.04.023

[10] Do Vale LH, Filho EX, Miller RN, Ricart CAO, De Sousa MV. Cellulase Systems in Trichoderma: An Overview, in Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, Biotechnology and Biology of Trichoderma, Chapter 16: 229-244, 2014.
doi: 10.1016/B978-0-444-59576-8.00016-3

[11] Li Y, Liu C, Bai F, Zhao, X. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture, Bioresource Technology, 216: 503-510, 2016. doi: 10.1016/j.biortech.2016.05.108

[12] Zhang F, Zhao X, Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1, Bioresource Technology, 247: 676-683, 2018.
doi: 10.1016/j.biortech.2017.09.126

[13] Centeno Rumbos R, Pavone Maniscalco D. Producción de celulasas y biomasa del hongo Trichoderma reesei utilizando lodo papelero como fuente de carbono, Revista de la Sociedad Venezolana de Microbiología, 35: 40-46, 2015.
Available at: http://www.scielo.org.ve/pdf/rsvm/v35n1/art08.pdf

[14] Suesca Díaz A. Producción de enzimas celulolíticas a partir de cultivos de Trichoderma sp. con biomasa lignocelulósica, Master of Science thesis, Universidad Nacional de Colombia, Bogotá, Colombia. 2012.
Available at: http://www.bdigital.unal.edu.co/7843/1/300054.2012.pdf

[15] Zhao S, Liang X, Hua D, Ma T, Zhang H. High-yield cellulase production in solid-state fermentation by Trichoderma reesei SEMCC-3.217 using water hyacinth (Eichhornia crassipes), African
Journal of Biotechnology, 10: 10178-10187, 2011.
doi: 10.5897/AJB10.748

[16] Chandra M, Kalra A, Sharma PK, Sangwan RS. Cellulase production by six Trichoderma spp. fermented on medicinal plant processings, Journal of Industrial Microbiology & Biotechnology, 36: 605-609, 2009.
doi: 10.1007/s10295-009-0544-9

[17] Grujic M, Dojnov B, Potocnik I, Duduk B, Vujcic Z. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation, International Biodeterioration & Biodegradation, 104: 290-298, 2015.
doi: 10.1016/j.ibiod.2015.04.029

[18] Ortiz GE, Guitart ME, Cavalitto SF, Albertó EO, Fernández- Lahore M, Blasco M. Characterization, optimization, and scaleup of cellulases production by Trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products, Bioprocess and Biosystems Engineering, 38: 2117-2128, 2015.
doi: 10.1007/s00449-015-1451-2

[19] Maurya DP, Singh D, Pratap D, Maurya JP. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei, Journal of Environmental Biology, 33: 5-8, 2012.
Available at: http://jeb.co.in/journal_issues/201201_jan12/paper_02.pdf

[20] Kupski L, Arnhold Pagnussatt F, Garda Buffon J, Badiale Furlong E. Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: Production, characterization, and thermal stability, Applied Biochemistry and Biotechnology, 172: 458-468, 2014.
doi: 10.1007/s12010-013-0518-2

[21] Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK. Valueaddition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi, Industrial Crops and Products, 34: 1160-1167, 2011.
doi: 10.1016/j.indcrop.2011.04.001

[22] Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse, Biotechnology for Biofuels, 6: 1-13, 2013.
doi: 10.1186/1754-6834-6-172

[23] Pathak P, Bhardwaj NK, Singh AK. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling, Applied Biochemistry and Biotechnology, 172: 3776-3797, 2014.
doi: 10.1007/s12010-014-0758-9

[24] Saratale GD, Kshirsagar SD, Sampange VT, Saratale RG, Oh S-E, Govindwar SP et al. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production, Applied Biochemistry and Biotechnology, 174: 2801-2817, 2014.
doi: 10.1007/s12010-014-1227-1

[25] Singhania RR, Patel AK, Soccol CR, Pandey A. Recent advances in solid-state fermentation, Biochemical Engineering Journal, 44: 13-18, 2009.
doi: 10.1016/j.bej.2008.10.019
[26] Escudero Agudelo J, Daza Merchán ZT, Gil Zapata NJ, Mora Muñoz OY. Evaluación de las enzimas celulolíticas producidas por hongos nativos mediante fermentación en estado sólido (SSF) utilizando residuos de cosecha de caña de azúcar, Revista Colombiana de Biotecnología, XV: 108–117, 2013.

[27] Ghose TK. Measurement of cellulase activities, Pure and Applied Chemistry, 59: 257-268, 1987.

[28] Miller GL. Use of Dinitrosalicylic Acid reagent for determination of reducing sugar, Analytical Chemistry, 31: 426-428, 1959.

[29] Blandón Castaño G, Dávila Arias MT, Rodríguez Valencia N. Caracterización microbiológica y fisicoquímica de la pulpa de café sola y con mucílago, en proceso de lombricompostaje, Cenicafé, 50: 5-23, 1999.

[30] Daivasikamani S, Kannan N. Studies on post-harvest mycoflora of coffee cherry of robusta, Journal of Coffee Research, 16: 102-106, 1986.

[31] Brand D, Pandey A, Roussos S, Soccol CR. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system, Enzyme and Microbial Technology, 27: 127-133, 2000.
doi: 10.1016/S0141-0229(00)00186-1

[32] Ahamed A, Vermette P. Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production, Bioresource Technology, 100: 5979-5987, 2009.
doi: 10.1016/j.biortech.2009.02.070

[33] Boggione MJ, Allasia MB, Bassani G, Farruggia B. Potential use of soybean hulls and waste paper as supports in SSF for cellulase production by Aspergillus niger, Biocatalysis and Agricultural Biotechnology, 6: 1-8, 2016.
doi: 10.1016/j.bcab.2016.02.003

[34] Lo C-M, Zhang Q, Callow NV, Ju L-K. Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction, Bioresource Technology, 101: 717-723, 2010.
doi: 10.1016/j.biortech.2009.08.056

[35] Madamwar D, Patel S. Formation of cellulases by co-culturing of Trichoderma reesei and Aspergillus niger on cellulosic waste, World Journal of Microbiology and Biotechnology, 8: 183-186, 1992.
doi: 10.1007/BF01195843

[36] Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi, Current Genomics, 14: 230- 249, 2013.
doi: 10.2174/1389202911314040002

[37] Guoweia S, Man H, Shikai W, He C. Effect of some factors on production of cellulase by Trichoderma reesei HY07, Procedia Environmental Sciences, 8: 357-361, 2011.
doi: 10.1016/j.proenv.2011.10.056
How to Cite
Zapata, Y. M., Galviz-Quezada, A., & Osorio Echeverri, V. M. (2018). Cellulases production on paper and sawdust using native Trichoderma asperellum. Universitas Scientiarum, 23(3), 419–436. https://doi.org/10.11144/Javeriana.SC23-3.cpop
Section
Applied Microbiology