Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones
PDF

Keywords

Lanthanide complexes
DNA interaction
groove interaction
antibacterial activity
thiosemicarbazones

How to Cite

Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones. (2018). Universitas Scientiarum, 23(2), 141-169. https://doi.org/10.11144/Javeriana.SC23-2.saaa
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

This paper reports the synthesis and detailed characterization of six novel lanthanide complexes of La(III), Eu(III) and Nd(III) with N(4)-substituted thiosemicarbazones derived from the 2-carboxybenzaldehyde. The IR, 1H-NMR and 13C-NMR spectroscopic studies confirmed the coordination of the thiocarbonyl (C=S), azomethine (C=N) and carboxylate (COO-) groups to the metal centers, and the carboxylate was coordinated in a bidentate manner. The elemental and thermal analyses suggest that lanthanide complexes were formed in 1:2 molar ratios (metal:ligand). The molar conductivity values confirmed the non-electrolytic nature of the complexes. The interaction of these complexes with calf thymus DNA (CT-DNA) was investigated by UV absorption and viscosity measurements. It was found that the Eu(III) and Nd(III) complexes could roll along the DNA strands through groove interactions. Furthermore, lanthanide complexes could promote the oxidative cleavage of plasmid pBR322 in a high-oxidative stress environment. Finally, the Schiff base ligands (L) and their complexes were evaluated for their antibacterial activities against gram-positive and gram-negative bacteria using a microdilution procedure. The results indicate that the lanthanide complexes exhibit more potent antibacterial activity than the free ligands.

PDF

Aragón-Muriel A, Camprubí-Robles M, González-Rey E, Salinas-Castillo A, Rodríguez-Diéguez A, Gómez-Ruiz S, Polo-Cerón D. Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: Study of the cytotoxic properties and the catalytic oxidation of styrene, Polyhedron, 80: 117-128, 2014.

doi: 10.1016/j.poly.2014.02.040

Aragón-Muriel A, Polo-Cerón D. Synthesis, characterization, thermal behavior and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate, Journal of Rare Earths, 31: 1106-1113, 2013.

doi: 10.1016/S1002-0721(12)60412-8

Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals, Proceedings of the National Academy of Sciences of the United States of America, 99: 14298-14302, 2002.

doi: 10.1073/pnas.162491399

Guo Z, Sadler PJ. Metals in Medicine, Angewandte Chemie International Edition, 38: 1512-1531, 1999.

doi: 10.1002/(SICI)1521-3773(19990601)38:11<1512::AIDANIE1512>3.0.CO;2-Y

Diaz Granados CA, McGowan JEJ. Antimicrobial Drug Resistance, Humana Press, New Jersey, USA 2009.

Sriram D, Yogeeswari P, Dhakla P, Senthilkumar P, Banerjee D, Manjashetty TH. 5-Nitrofuran-2-yl derivatives: Synthesis and inhibitory activities against growing and dormant mycobacterium species, Bioorganic and Medicinal Chemistry Letters, 19: 1152-1154, 2009.

doi: 10.1016/j.bmcl.2008.12.088

Stefani C, Jansson P J, Gutierrez E, Bernhardt PV, Richardson DR, Kalinowski DS. Alkyl substituted 2’-Benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic

activity: novel ligands that limit methemoglobin formation, Journal of medicinal chemistry, 56: 357-370, 2013.

doi: 10.1021/jm301691s

Brodowska K, Correia I, Garribba E, Marques F, Klewicka E, Lodyga-Chruscinska E, Pessoa JC, Dzeikala A, Chruscinski L. Coordinationability and biological activity of a naringenin thiosemicarbazone,

Journal of Inorganic Biochemistry, 165: 36-48, 2016.

doi: 10.1016/j.jinorgbio.2016.09.014

Pelosi G. Thiosemicarbazone Metal Complexes: From Structure to Activity, The Open Crystallography Journal, 3: 16-28, 2010.

doi: 10.2174/1874846501003010016

Tahghighi A. Importance of metal complexes for development of potential leishmanicidal agents, Journal of Organometallic Chemistry, 770: 51-60, 2014.

doi: 10.1016/j.jorganchem.2014.08.007

Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao Y, Lovejoy DB, Kumar N. Design, Synthesis, and Characterization of Novel Iron Chelators: Structure-Activity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents, Journal of medicinal chemistry, 50: 3716-3729, 2007.

doi: 10.1021/jm070445z

Fricker SP, Fricker S. The therapeutic application of lanthanides, Royal Chemical Society, 35: 524-533, 2006.

doi: 10.1039/b509608c

Hernández-Gil J, Ferrer S, Cabedo N, López-Gresa MP, Castiñeiras A, Lloret F. Two copper complexes from two novel naphthalene-sulfonyltriazole ligands: Different nuclearity and different DNA binding and

cleavage capabilities, Journal of Inorganic Biochemistry, 125: 50-63, 2013.

doi: 10.1016/j.jinorgbio.2013.04.007

Saswati, Chakraborty A, Dash SP, Panda AK, Acharyya R, Biswas A, Mukhopadhyay S, Bhutia SK, Crochet A, Patil YP. Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu(I/II) complexes

of thiosemicarbazone: special emphasis on their interactions with DNA, Dalton Transactions, 44: 6140-6157, 2015.

doi: 10.1039/c4dt03764b

Muniyandi V, Pravin N, Raman N. Impact of metallonucleases on DNA interactions: Structural validation and in-vitro antibiogram assay, Inorganic Chemistry Communications, 46: 60-64, 2014.

doi: 10.1016/j.inoche.2014.05.003

Barone G, Terenzi A, Lauria A, Almerico AM, Leal JM, Busto N, García B. DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure-affinity relationships, Coordination Chemistry Reviews, 257: 2848-2862, 2013.

doi: 10.1016/j.ccr.2013.02.023

Yang Z, Wang Y, Wang Y. Study on synthesis, structure, and DNA-binding of lanthanide complexes with 2-carboxylbenzaldehyde thiosemicarbazone, Bioorganic & Medicinal Chemistry Letters, 17: 2096-2101, 2007.

doi: 10.1016/j.bmcl.2006.10.049

Chandra S, Vandana. Synthesis, spectroscopic, anticancer and antibacterial studies of Ni(II) and Cu(II) complexes with 2-carboxybenzaldehyde thiosemicarbazone, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 129: 333-338, 2014.

doi: 10.1016/j.saa.2014.02.141

Wang B, Yang ZY, Li T. Synthesis, characterization, and DNAbinding properties of the Ln(III) complexes with 6-hydroxy chromone-3-carbaldehyde-(2’-hydroxy) benzoyl hydrazine, Bioorganic

& medicinal chemistry, 14:6012-6021, 2006.

doi: 10.1016/j.bmc.2006.05.015

Nevagi R, et al. Design, Synthesis and Biological Evaluation of Novel Thiosemicarbazide Analogues as Potent Anticonvulsant Agents, Bioorganic Chemistry, 54: 68-72, 2014.

doi: 10.1016/j.bioorg.2014.04.002

Scovill JP. A Facile Synthesis of Thiosemicarbazides and Thiosemicarbazones by the Transamination of 4-methyl-4-phenyl-3-thiosemicarbazide, Phosphorus, Sulfur, and Silicon and the Related

Elements, 60: 15-19, 1991.

doi: 10.1080/10426509108233920

Serra S, Moineaux L, Vancraeynest C, Masereel B, Wouters J, Pochet L, Frédérick R. Thiosemicarbazide, a fragment with promising indolamine-2, 3-dioxygenase (IDO) inhibition properties, European

Journal of Medicinal Chemistry, 82: 96-105, 2014.

doi: 10.1016/j.ejmech.2014.05.044

Andrews JM. Determination of minimum inhibitory concentrations, Journal of Antimicrobial Chemotherapy, 49:1049, 2002.

doi: 10.1093/jac/dkf083

Clinical and Laboratory Standards Institute. In Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard-ninth edition, CLSI, Pennsylvania USA 2012.

doi: 10.1016/j.bmc.2006.05.015

Płowaś I, Świergiel J, Jadżyn J. Electrical conductivity in dimethyl sulfoxide + potassium iodide solutions at different concentrations and temperatures, Journal of Chemical & Engineering Data, 59: 2360-2366, 2014

doi: 10.1021/je4010678

Deacon GB, Philibs RJ. Relationships Between The Carbon-Oxygen Stretching Frecuencies of Carboxilato Complexes and The Type of Carboxylate Coordination, Coordination Chemistry Reviews, 33:

-250, 1980.

doi: 10.1016/S0010-8545(00)80455-5

Chen ZF, Gu YQ, Song XY, Liu YC, Peng Y, Liang H. Synthesis, crystal structure, cytotoxicity and DNA interaction of 5,7-dichloro-8-quinolinolato-lanthanides, European Journal of Medicinal Chemistry, 59: 194-202, 2013.

doi: 10.1016/j.ejmech.2012.10.037

Biver T. Use of UV-Vis Spectrometry to Gain Information on the Mode of Binding of Small Molecules to DNAs and RNAs, Applied Spectroscopy Reviews, 47: 272-325, 2012.

doi: 10.1080/05704928.2011.641044

Suh D, Chaires JB. Criteria for the mode of binding of DNA binding agents, Bioorganic and Medicinal Chemistry, 3: 723-728, 1995.

doi: 10.1016/0968-0896(95)00053-J

Raman N, Selvan A, Manisankar P. Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76: 161-173, 2010.

doi: 10.1016/j.saa.2010.03.007

Liu YC, Chen ZF, Song XY, Peng Y, Qin QP, Liang H. Synthesis, crystal structure, cytotoxicity and DNA interaction of 5,7-dibromo-8-quinolinolato-lanthanides, European Journal of Medicinal Chemistry, 59: 168-175, 2013.

doi: 10.1016/j.ejmech.2012.11.001

García MA, Pascual-Teresa B. Técnicas empleadas para el estudio de la interacción entre agentes antitumorales y el DNA, Oncología, 27: 69-79, 2004.

doi: 10.4321/S0378-48352004000200004

Shahbazy M, Pakravan P, Kompany-Zareh M. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro, Journal of Biomolecular

Structure and Dynamics, 35: 2539-2556, 2017. doi: 10.1080/07391102.2016.1225604

Gökçe C, Gup R. Copper(II) complexes of acylhydrazones: Synthesis, characterization and DNA interaction, Applied Organometallic Chemistry, 27: 263-268, 2013.

doi: 10.1002/aoc.2955

Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.