Published Jul 30, 2018



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Jerson I. Reina-Medrano http://orcid.org/0000-0002-9643-9135

Framsol López-Suspes

Guillermo A González http://orcid.org/0000-0001-5805-9388

##plugins.themes.bootstrap3.article.details##

Abstract

Maximum disc mass models for a set of spiral galaxies from the Ursa Major Cluster are presented. We construct the models using the Hunther method and the particular solutions are chosen in such away that the circular velocities are adjusted very accurately to the observed rotation curves of some specific spiral galaxies. Under the maximum disc hypothesis, we consider that the rotation curves of the analyzed galaxies can be modeled with only the contribution of the disc. This implies that it is not necessary to consider the contribution of the dark matter halo in the inner part of the spiral. In this way, the models reproduce the global behavior of the rotation curves in the great majority of galaxies. Producing good adjustments to calculate the total mass of these galaxies, and yielding values of the order of 1010M0. Based on the vertical
stability criterion presented by Viera & Ramos-Caro(2016), we find that all the galaxies analyzed present a vertically stable behavior.On the other hand, from the analysis of the epicyclic frequency we find that al lthe models exhibit mainly a radial stable behaviour except at the edge of the disc.

Keywords

Potential Theory, Stellar Dynamics, Galactic Mass.

References
Arfken G, Weber H. Mathematical Methods for Physicists, 6th Ed., Academic Press, 2005.

Bajkova AT, Bobylev VV. Rotation curve and mass distribution in the galaxy from the velocities of objects at distances up to 200 kpc, Astronomy Letters, 42(49): 567-582, 2016.
doi: 10.1134/S1063773716090012

Bateman H. Partial Differential Equations, First American Edition, New York, Dover, 1944.

Bevington P, Keith D. Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., Mc Graw Hill. 2003.
Binney J, Tremaine S. Galactic Dynamics, 2nd Ed., Princeton University Press. 2008.

Brun R, Rademakers F. ROOT - An object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research A, 389(1): 81-86, 1997.
doi: 10.1016/S0168-9002(97)00048-X

Danby JMA. An Introduction to Stellar Astrophysics, Wiley. 1988.

González GA, Plata-Plata S, Ramos-Caro J. Finite thin disc models of four galaxies in the Ursa Major cluster: NGC3877, NGC3917, NGC3949 and NGC4010, Monthly Notices of the Royal Astronomical Society, 404(1): 468-474, 2010.
doi: 10.1111/j.1365-2966.2010.16303.x

González GA, Reina JI. An infinite family of generalized Kalnajs disks, Monthly Notices of the Royal Astronomical Society, 371(4): 1873-1876, 2006.
doi: 10.1111/j.1365-2966.2006.10819.x

González GA, Reina JI. Analytical Potentials for Flat Galaxies with Spheroidal Halos. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 40(156): 402-411, 2016.
doi: 10.18257/raccefyn.376

Hunter C. The structure and stability of self-gravitating disks, Monthly Notices of the Royal Astronomical Society, 126(4): 299-315, 1963.
doi: 10.1093/mnras/126.4.299

Kalnajs AJ. Mass distribution and dark halos: Dussion, in: Internal kinematics and dynamics of galaxies, Proceedings of the IAU Symposium, Dordrecht, D. Reidel Publishing Co., 87-88, 1983.

Kent SM. Dark matter in spiral galaxies. I - Galaxies with optical rotation curves, The Astronomical Journal, 91(6): 1301-1327, 1986.
doi: 10.1086/114106

LeBlanc F. Galactic Dynamics, 2nd Ed., Princeton University Press. 2010.

Oort JH. Observational evidence confirming Lindblad’s hypothesis of a rotation of the galactic system, Bulletin of the Astronomical Institutes of the Netherlands, 3(120): 275-282, 1927.

Palunas P, Williams TB. Maximum disc mass models for spiral galaxies, The Astronomical Journal, 120(6): 2884-2903, 2000.
doi: 0.1086/316878

Rubin VC, Burstein D, Ford WK, Thonnard N. Rotation Velocities of 16 SA Galaxies and a Comparison of Sa, Sb, and SC Rotation Properties, The Astrophysical Journal, 289(1): 81-104, 1985.
doi: 10.1086/162866

Sofue Y, Honma M, Omodaka T. Unified Rotation Curve of the Galaxy – Decomposition into de Vaucouleurs Bulge, disc, Dark Halo, and the 9-kpc Rotation Dip, Publications of the Astronomical Society of Japan,
61(2): 227-236, 2009.
doi: 10.1093/pasj/61.2.227

Van Albada TS, Bahcall JN, Begeman K, Sancisi R. Distribution of dark matter in the spiral galaxy NGC 3198, The Astrophysical Journal, 295(1): 305-313, 1985.
doi: 10.1086/163375

Verheijen MAW, Sancisi R. The Ursa Major cluster of galaxies. IV. HI
synthesis observations, Astronomy and Astrophysics, 370(3): 765-867, 2001.
doi: 10.1051/0004-6361:20010090

Vieira RSS, Ramos-Caro J. Integrability of motion around galactic razorthin disks, Celestial Mechanics and Dynamical Astronomy, 126(4): 483-500,2016.
doi: 10.1007/s10569-016-9705-0
How to Cite
Reina-Medrano, J. I., López-Suspes, F., & González, G. A. (2018). Mass of Spiral Galaxies by Means of a Maximum Disc Model. Universitas Scientiarum, 23(2), 191–218. https://doi.org/10.11144/Javeriana.SC23-2.mosg
Section
Physics