##plugins.themes.bootstrap3.article.main##


Elizabeth Ruiz https://orcid.org/0000-0003-1949-4736

César Augusto Ramírez https://orcid.org/0000-0002-2687-9880

Julián Camilo Casas https://orcid.org/0000-0002-4615-385X

María Isabel Ospina https://orcid.org/0000-0002-4656-9476

José María Requena https://orcid.org/0000-0001-7550-0198

Concepción J. Puerta https://orcid.org/0000-0002-3449-3961

Abstract

In trypanosomatids, gene expression is mainly regulated at posttranscriptional level, through mechanisms based on the interaction between RNA Binding Proteins [RBPs] and motifs present in the untranslated regions [UTRs] of them RNAs, which altogether form ribonucleoproteic complexes [RNP] that define the fate of the mRNA. The pre-mRNA derived from the LYT1 gene of Trypanosoma cruzi, is processed by alternative trans-splicing, resulting in different mRNAs which code for the isoforms mLYT1 and kLYT1, proteins having differential expression, cellular location and function. The aim of this study was to characterize the 5’ and 3’ UTRs of the LYT1 mRNAs as the initial step towards the objective of identification of the RBPs responsible for their differential expression. The presence of the two types of 5’ UTRs were confirmed in two T. cruzi isolates belonging to the DTU I, thus, corroborating the occurrence of alternative trans-splicing also in the LYT1 gene of this T.cruzi DTU. In addition, for the first time, was unscovered the existence of two types of LYT1 mRNAs transcripts, differing in length by 116 nts, that are generated by alternative polyadenylation. Furthermore, an in-silico analysis of the experimentally obtained UTRs, and ten additional LYT1 sequences retrieved from TritrypDB and GenBank databases, together with a thoroughly search of structural motifs, showed a remarkable conservation of relevant structural motifs previously associated with RNA metabolism in the different UTRs; these elements might be involved in the differential stage-specific expression of each LYT1 isoform.

##plugins.themes.bootstrap3.article.details##

Keywords

Trypanosoma cruzi, Untranslated region [UTR], RNA binding proteins [RBP], Regulation of gene expression, LYT1 gene

References
[1] Instituto Nacional de Salud [INS]. Proceso de vigilancia y análisis del riesgo en salud pública. Informe del evento enfermedad de Chagas, Colombia. 1-16, 2017.
Retrieved from: http://simposiovirologia.ins.gov.co/lineas-de accion/ Subdireccion-Vigilancia

[2] Organización Mundial de la Salud [OMS]. Nota descriptiva N°340. La enfermedad de Chagas [Tripanosomiasis americana]. 2017.
Retrieved from www.who.int/mediacentre/factsheets/fs340

[3] Bern C. Chagas’ Disease, New England Journal of Medicine, 373(5): 456-466, 2015.
doi: 10.1056/NEJMra1410150

[4] Araújo P, Teixeira S. Regulatory elements involved in the posttranscriptional control of stage-specific gene expression in Trypanosoma cruzi: a review, Memórias do Instituto Oswaldo Cruz, 106(3): 257-266, 2011.
doi: 10.1590/S0074-02762011000300002

[5] Cassola A, Frasch A. An RNA recognition motif mediates the nucleocytoplasmic transport of a Trypanosome RNA-binding protein, Journal of Biological Chemistry, 284(50): 35015-35028, 2009.
doi: 10.1074/jbc.M109.031633

[6] Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias, Molecular and Biochemical Parasitology,156(2): 93-101, 2007.
doi: 10.1016/j.molbiopara.2007.07.007

[7] Martínez-Calvillo S, Vizuet-de-Rueda J, Florencio-Martínez L, Manning-Cela R, Figueroa-Angulo E. Gene expression in trypanosomatid parasites, Journal of Biomedicine and Biotechnology, 2010(525241): 1-15, 2010.
doi: 10.1155/2010/525241

[8] Günzl A. The pre-mRNA splicing machinery of trypanosomes complex or simplified?, Eukaryotic Cell, 9(8): 1159-1170, 2010.
doi: 10.1128/EC.00113-10

[9] Glisovic T, Bachorik J, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation, FEBS Letters, 582(14): 1977-1986, 2008.
doi: 10.1016/j.febslet.2008.03.004

[10] Lim C, Allada R. Emerging roles for post-transcriptional regulation in circadian clocks, Nature Neuroscience, 16(11): 1544- 1550, 2013.
doi: 10.1038/nn.3543

[11] Osorio L, Ríos I, Gutiérrez B, González J. Virulence factors of Trypanosoma cruzi: who is who?, Microbes and Infection, 14(15): 1390-1402, 2012.
doi: 10.1016/j.micinf.2012.09.003

[12] Zago M, Barrio A, Cardozo R, Duffy T, Schijman A, Basombrío M. Impairment of infectivity and immunoprotective effect of a LYT1 null mutant of Trypanosoma cruzi, Infection and Immunity, 76(1): 443-451, 2008.
doi: 10.1128/IAI.00400-07

[13] Andrews N, Abrams C, Slatin S, Griffiths G. A T. cruzi secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH, Cell, 61(7): 1277-1287, 1990.
doi: 10.1016/0092-8674(90)90692-8

[14] Manning-Cela R, Cortés A, González-Rey H, Van Voorhis W, Swindle J, González A. LYT1 protein is required for efficient in vitro infection by Trypanosoma cruzi, Infection and Immunity, 69(6): 3916-3923, 2001.
doi: 10.1128/IAI.69.6.3916-3923.2001

[15] Manning-Cela R, González A, Swindle J. Alternative splicing of LYT1 transcripts in Trypanosoma cruzi, Infection and Immunity, 70(8): 4726-4728, 2002.
doi: 10.1128/IAI.70.8.4726-4728.2002

[16] Benabdellah K, González E, González A. Alternative transsplicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein, Molecular Microbiology, 65(6): 1559-1567, 2007.
doi: 10.1111/j.1365-2958.2007.05892.x

[17] Ballesteros G, Santillán M, Cruz M, Márquez C, Lugo C, Martínez S, Swindle J, Manning-Cela R. The alternative products of Trypanosoma cruzi LYT1 have different localization patterns, Veterinaria. México OA, 43(1):29-42, 2012.

[18] Pavía P, Thomas M, Lopez M, Puerta C. Molecular characterization of the short interspersed repetitive element SIRE in the six discrete typing units (DTUs) of Trypanosoma cruzi, Experimental Parasitology, 132(2): 144-150, 2012.
doi: 10.1016/j.exppara.2012.06.007

[19] Barrera Y, Guevara J, Pavía P, Montilla M, Nicholls R, Parra E, Puerta C. Evaluación de las pruebas de PCR TcH2AF-R y S35-S36 para la detección de Trypanosoma cruzi en tejido cardiaco de ratón, Biomédica, 28(4):616-626, 2008.
doi: 10.7705/biomedica.v28i4.68

[20] Silva L, Nussenzweig V. Sobre una cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco, Folia Clinica et Biologica, 20(1): 191-207, 1953.

[21] Lasso P, Mateus J, Pavía P, Rosas F, Roa N, Thomas M, López M, González J, Puerta C, Cuéllar A. Inhibitory receptor expression on CD8+ T cells is linked to functional responses against Trypanosoma cruzi antigens in chronic chagasic patients, The Journal of Immunology, 195(8): 3748-3758, 2015.
doi: 10.4049/jimmunol.1500459

[22] Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual. Harbor laboratory press, Cold spring harbor, New York. USA, 1989.

[23] Rio D, Ares Jr M, Hannon G, Nilsen T. RNA: a laboratory manual. CSHL press, Cold spring harbor, New York. USA, 2010.
doi: 10.1101/pdb.prot5439

[24] Grisard E, Teixeira S, de Almeida L, Stoco P, Gerber A, Talavera- López C, Lima O, Andersson B, de Vasconcelos A. Trypanosoma cruzi clone Dm28c draft genome sequence, Genome Announcements, 2(1):1-2, 2014.
doi: 10.1128/genomeA.01114-13

[25] Franzén O, Ochaya S, Sherwood E, Lewis M, Llewellyn M, Miles M, Andersson B. Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener, PLoS Neglected Tropical Diseases, 5(3):1-9, 2011.
doi: 10.1371/journal.pntd.0000984

[26] Miles M, Toye P, Oswald S, Godfrey D. The identification by isoenzyme patterns of two distinct strain-groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil, Transactions of the Royal Society of Tropical Medicine and Hygiene, 71(3): 217-225, 1977.
doi: 10.1016/0035-9203(77)90012-8

[27] Weatherly D, Boehlke C, Tarleton R. Chromosome level assembly of the hybrid Trypanosoma cruzi genome, BMC Genomics, 10(255): 1-13, 2009.
doi: 10.1186/1471-2164-10-255

[28] Lima L, Ortiz P, da Silva F, Alves J, Serrano M, Cortez A, Alfieri S, Buck G, Teixeira M. Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other Trypanosome species, PLoS ONE, 7(6):1-15, 2012.
doi: 10.1371/journal.pone.0038385

[29] Cosentino R, Aguero F. A simple strain typing assay for Trypanosoma cruzi: discrimination of major evolutionary lineages from a single amplification product, PLoS Neglected Tropical Diseases, 6(7):1-11, 2012.
doi: 10.1371/journal.pntd.0001777

[30] Franzén O, Talavera-López C, Ochaya S, Butler C, Messenger L, Lewis M, Llewellyn M, Marinkelle C, Tyler K, Miles M, Andersson B. Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies.T. cruzi marinkellei, BMC Genomics, 13(531):1-19, 2012.
doi: 10.1186/1471-2164-13-531

[31] Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson J, Higgins D. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, 7(539):1-6, 2011.
doi: 10.1038/msb.2011.75

[32] Will S, Joshi T, Hofacker I, Stadler P, and Backofen R. LocARN-P: accurate boundary prediction and improved detection of structural RNAs, RNA, 18(5):900-914, 2012.
doi: 10.1261/rna.029041.111

[33] Chang T, Huang H, Hsu J, Weng S, Horng J, Huang H. An enhanced computational platform for investigating
the roles of regulatory RNA and for identifying functional RNA motifs, BMC bioinformatics, 14(2):1-8, 2013.
Retrieved from http://www.biomedcentral.com/1471-2105/14/S2/S4

[34] http://rna.urmc.rochester.edu/RNAstructureWeb/

[35] Bernhart S, Hofacker I, Will S, Gruber A, Stadler P. RNAalifold: improved consensus structure prediction for RNA alignments, BMC bioinformatics, 9(474): 1-13, 2008.
doi: 10.1186/1471-2105-9-474

[36] Nagao I, Obokata J. A poly(U) motif in the 5´untranslated region enhances the translational efficiency of b-glucuronidase mRNA in transgenic tobacco, Plant Science, 165(2003):621-626, 2003.
doi: 10.1016/S0168-9452(03)00232-2

[37] Kaspar R, Kakegawa T, Cranston H, Morris D, White M. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation, Journal of Biological Chemistry, 267(1):508-514, 1992
PMID: 1309750

[38] Sajjanar B, Deb R, Raina S, Pawar S, Brahmane M, Nirmale A, Kurade N, Manjunathareddy G, Bal S, Singh N. Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses, Journal of Thermal Biology, 65(16):69-75, 2017.
doi: 10.1016/j.jtherbio.2017.02.006

[39] Charlesworth A, Wilczynska A, Thampi P, Cox L, MacNicol A. Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation, The EMBO Journal, 25(12):2792-2801, 2006.
doi: 10.1038/sj.emboj.7601159

[40] Lan L, Appelman C, Smith A, Yu J, Larsen S, Marquez R, Liu H, Wu X, Gao P, Roy A, Anbanandam A, Gowthaman R, Karanicolas J, De Guzman R, Rogers S, Aubé J, Ji M, Cohen R, Neufeld K, Xu L. Natural product (−) gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1, Molecular Oncology, 9(7):1406-1420, 2015.
doi: 10.1016/j.molonc.2015.03.014

[41] Chang T, Yamashita A, Chen C, Yamashita Y, Zhu W, Durdan S, Kahvejian A, Sonenberg N, Shyu A. UNR, a new partner of poly (A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant, Genes and Development, 10(16):2010-2023, 2004.
doi: 10.1101/gad.1219104

[42] Clayton C. The regulation of trypanosomes gene expression by RNA-binding proteins, PLoS Pathogens, 9(11):1-4, 2013.
doi: 10.1371/journal.ppat.1003680

[43] Day D, Tuite M. Post-transcriptional gene regulatory mechanisms in eukaryotes: on overview, Journal of Endocrinology, 157(3):361-371, 1998.
PMID: 9691970

[44] Gazestani V, Lu Z, Salavat R. Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genomewide?, Trends in Parasitology, 30(5): 234-240, 2014.
doi: 10.1016/j.pt.2014.02.008

[45] Gomez C, Ramirez M, Calixto-Galvez M, Medel O, Rodriguez M. Regulation of gene expression in protozoa parasites, Journal of Biomedicine and Biotechnology, ID 726045: 1-24, 2010.
doi: 10.1155/2010/726045

[46] Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans, Nature, 418(6894): 236-242, 2002.
doi: 10.1038/418236a

[47] Gehring N, Wahle, E, Fischer U. Deciphering the mRNP code: RNA-bound determinants of post transcriptional gene regulation, Trends in Biochemical Science, 42(5): 369-382, 2017.
doi: 10.1016/j.tibs.2017.02.004

[48] De Gaudenzi J, Carmona S, Agüero F, Frasch A. Genomewide analysis of 3′-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes, Peer J, 1(e118): 1-28, 2013.
doi: 10.7717/peerj.118

[49] Shi Y. Alternative polyadenylation: New insights from global analyses, RNA, 18(12): 2105-2117, 2012.
doi: 10.1261/rna.035899.112

[50] Berkovits B, Mayr C. Alternative 3´ UTRs act as scaffolds to regulate membrane protein localization. Nature, 522(7556):363-367, 2015.
doi: 10.1038/nature14321

[51] Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids, Molecular and Biochemical Parasitology, 181(2): 61–72, 2012.
doi: 10.1016/j.molbiopara.2011.10.002

[52] De Gaudenzi J, Noé G, Campo V, Frasch A, Cassola A. Gene expression regulation in trypanosomatids, Essays in Biochemistry, 51: 31-46, 2011.
doi: 10.1042/bse0510031

[53] Penalva L, Sanchez L. RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation, Microbiol and Molecular Biology Reviews, 67(3): 343- 359, 2003.
doi: 0.1128/MMBR.67.3.343–359.2003

[54] Zearfoss N, Deveau L, Clingman C, Schmidt E, Johnson E, Massi F, Ryder S. A conserved three-nucleotide core motif defines musashi RNA-binding specificity, The Journal of Biological Chemistry, 289(51): 35530-35541, 2014.
doi: 10.1074/jbc.M114.597112

[55] Cragle C, MacNico A. Musashi protein-directed translational activation of target mRNAs is mediated by the poly(a) polymerase, germ line development defective-2, The Journal of Biological Chemistry, 289(20): 14239-14251, 2014.
doi: 10.1074/jbc.M114.548271
How to Cite
Ruiz, E., Ramírez, C., Casas, J., Ospina, M., Requena, J., & Puerta, C. (2018). Characterization of the mRNA untranslated regions [UTR] of the Trypanosoma cruzi LYT1 isoforms derived by alternative trans-splicing. Universitas Scientiarum, 23(2), 267-290. https://doi.org/10.11144/Javeriana.SC23-2.cotm
Section
Biología molecular / Molecular biology / Biologia molecular
Most read articles by the same author(s)