Effectiveness of vertical subsurface wetlands for iron and manganese removal from wastewater in drinking water treatment plants
##plugins.themes.bootstrap3.article.details##
Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.
Ascending filtration, C. esculenta, groundwater, P. australis, pilot scale, water purification
doi: 10.1016/j.jece.2018.03.019
Bain M, Stevenson N. Aquatic habitat assessment: Common methods, American Fisheries Society, Maryland, USA 1999.
Batista R, Sánchez A. Fitoremediación de metales pesados y microorganismos, Revista electronica de la agencia de medio ambiente, 16: 1-6, 2009.
Bello AO, Bassam ST, Amjad BK, Christopher RB, Tawfik AS. Phytoremediation of cadmium, lead and nickel contaminated water by Phragmites australis in hydroponic systems, Ecological Engineering, 120: 126-133, 2018.
doi: 10.1016/j.ecoleng.2018.05.035
Bonanno G, Giudice LR. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators, Ecological Indicators, 10: 639-645, 2010.
doi: 10.1016/j.ecolind.2009.11.002
Collins BS, Sharitz RR, Coughlin DP. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands, Bioresource Technology, 96: 937-948, 2005.
doi: 10.1016/j.biortech.2004.08.005
Collins B, McArthur JV, Sharitz RR. Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands, Ecological Engineering, 26: 107-115, 2004.
doi: 10.1016/j.ecoleng.2004.07.005
Clercq DD, Smith K, Chou B, Gonzalez A, Kothapalle R, Li C, Dong X, Liu S, Wen Z. Identification of urban drinking water supply patterns across 627 cities in China based on supervised and unsupervised statistical learning, Journal of Environmental Management, 223: 658-670, 2018.
doi: 10.1016/j.jenvman.2018.06.073
CVC, CIAT & DAGMA. Plan integral de mitigación y adaptación al cambio climático para Santiago de Cali. Corporación Autónoma Regional del Valle del Cauca (CVC), Centro Internacional de Agricultura Tropical (CIAT) y Departamento Administrativo de Gestión del Medio Ambiente (DAGMA).
http://www.cali.gov.co/dagma/loader.php?lServicio=Tools2&lTipo=-descargas&lFuncion=descargaridFile=23081. 2017
Delgadillo A, Gonzalez C, Prieto F, Villagomez J, Acevedo O. Fitoremediación: Una alternaiva para eliminar la contaminación, Tropical and subtropical agroecosystems, 14(2): 597-612, 2011.
DeNicola DM, Stapelton MG. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs aqueous effects, Environmental Pollution, 119: 303-315, 2002.
doi: 10.1016/s0269-7491(02)00106-9
Diaz C, Fall C, Quentin EM, Jiménez MDC, Esteller V, Garrido SE, López CM, García D. Remoción de hierro y manganeso en fuentes de agua potable para comunidades rurales, reuso y tratamientos avanzados de aguas residuales domésticas, Red Iberoamericana de Potabilización y Depuración del Agua (RIPDA-CYTED) y Centro Interamericano de Recursos del Agua, Universidad Autónoma del Estado de México (CIRA-UAEM) 2003.
Fessehaye M, Wahab SA, Michael JS, Kohler T, Gherezghiher T, Hurni H. Fog-water collection for community use, Renewable and Sustainable Energy Reviews, 29: 52-62, 2014.
doi: 10.1016/j.rser.2013.08.063
Gallego S, Herráez I. Nueva metodología a considerar en el control de la calidad del agua de los ríos de la comunidad de Madrid que reciben vertidos de instalaciones de tratamiento de aguas: parte I; cuenca del Manzanares, Retema: Revista técnica de medio ambiente, 74: 9-17, 2000.
Goulet R, Pick F. Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance, Ecological Engineering, 17(4): 373-384, 2000.
doi: 10.1016/S0925-8574(00)00161-0
Hiusman L. Sedimentation and Flotaton. Reprinted 2 edition, Delft University of Technology, Delft, The Netherlands 2004.
Ipinza J, Ibañez J, Pagliero A, Vergara F. Mecanismos de la formación de compuestos de manganeso en electrolitos ácidos, Revista de Metalurgia, 43(1): 11-19, 2007.
Jabli M, Tawfik AS, Nouha S, Najeh T, Ramzi K. Dimethyl diallyl ammonium chloride and diallylamin co-polymer modified bio-film derived from palm dates for the adsorption of dyes, Scientific Reports, 7(1): 1-12, 2017.
doi: 10.1038/s41598-017-14327-7
Jeevanantham S, Saravanan A, Hemavathy RV, Senthil Kumar P, Yaashikaa PR, Yuvaraj D. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects, Environmental Technology & Innovation, 13: 264-276, 2019.
doi: 10.1016/j.eti.2018.12.007
Juárez M, Cerdán M., Sánchez A. Hierro en el sistema suelo-planta, Universidad de Alicante, Alicante, España 2007.
Kabata PA. Trace elements in soils and plants. Fourth edition, CRC Press Taylor and Francis Group, Boca Raton, USA 2010.
Knox A, Dunn D, Paller M, Nelson E, Specht W, Seaman J. Assessment of contaminant retention in constructed wetland sediments, Engineering in Life Sciences, 6: 31-36, 2006.
doi: 10.1002/elsc.200620116
Lizama EA. The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmires australis, Chemical Engineering Journal, 246: 217-228, 2014.
doi: 10.1016/j.cej.2014.02.035
Lopez E, Aduvire O, Berettino D. Tratamientos pasivos de drenajes ácidos de mina: estado actual y perspectivas de futuro, Boletín Geológico y Minero, 113: 3-21, 2002.
Low HD, Handojo U, Lim ZH. Correlation between turbidity and total suspended solids in singapore rivers, Journal of Water ustainability, 1(3): 313-322, 2011.
Luna V, Castañeda S. Sistema de humedales artificiales para el control de la eutroficación del lago del Bosque de San Juan de Aragón, Revista Especializada en Ciencias Químico-Biológicas, 17: 32-55, 2014.
Marchand L, Mench M, Jacob DL, Otte ML. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review, Environmental Pollution, 158(12): 3447-3461, 2010.
doi: 10.1016/j.envpol.2010.08.018
Martínez F. Evaluación económica de la recirculación de aguas de lavado proveniente de las unidades de filtración rápida de la planta de potabilización manantiales, monografía de especialización, Universidad de Antioquia, Medellin, Colombia. 2010.
Marsidi N, Hassimi AH, Siti Rozaimah SA. A Review of biological aerated filters for iron and manganese ions removal in water treatment, Journal of Water Process Engineering, 23: 1-12, 2018.
doi: 10.1016/j.jwpe.2018.01.010
McDonald RI, Weber K, Padowski J, Flörke M., Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, Balk D, Boucher T, Grill G, Montgomery M. Water on an urban planet: Urbanization and the reach of urban water infrastructure, Global Environmental Change, 27: 96-105, 2014.
doi: 10.1016/j.gloenvcha.2014.04.022
Moodley I, Sheridan CM, Kappelmeyer U, Akcil A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-Products, Minerals Engineering,
126: 207-210, 2018.
doi: 10.1016/j.mineng.2017.08.008
Muñoz H, Orozco S, Vera A, Suarez J, García E, Neira M, Jiménez J. Relación entre oxígeno disuelto, precipitación pluvial y temperatura: río Zahuapan, Tlaxcala, México, Tecnología y ciencias del agua, 6: 59-74, 2015.
Peña E, Madera C, Sanchez J, Medina J. Bioprospección de plantas nativas para su uso en procesos de bioremediación: caso Helicona Psittacorum (Heliconiacea), Revista Academica Colombiana de Ciencias Exactas, Físicas y Naturales, 37: 469-481, 2013.
doi: 10.18257/raccefyn.29
Pimentel D, Burgess M. World human population problems. In Dellasala DA, Goldstein MI. (ed), Encyclopedia of the Anthropocene (313-317), Elsevier, Waltham MA, USA 2018.
doi: 10.1016/B978-0-12-809665-9.09303-4
Porter C, Nairn RW. Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms, Science of The Total Environment, 408: 5445-5451, 2010.
doi: 10.1016/j.scitotenv.2010.07.089
Rios C, Williams C, Roberts C. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites, Journal of hazardous materials,156: 23-35, 2008.
doi: 10.1016/j.jhazmat.2007.11.123
Robbins EI, Cravotta CA, Savela CE, Nord G L. Hydrobiogeochemical interactions in anoxic limestone drains for neutralization of acidic mine drainage, Fuel, 78(2): 259-270, 1999.
doi: 10.1016/S0016-2361(98)00147-1
Rodriguez C. Humedales Construidos. Estado del Arte II, Ingenieria Hidarulica y Ambiental, 24(3): 42-48, 2003.
Saavedra O, Rondon C. Determinación de microelementos en acibar de hojas de zábila (Aloe vera L. Burm. F), Revista del Instituto Nacional de Higiene Rafael Rangel, 40: 13-17, 2009.
Saleh TA. Advanced nanomaterials for water engineering, treatment, and hydraulics, IGI Global, Hershey PA, USA 2017.
doi: 10.4018/978-1-5225-2136-5
Saleh TA, Gupta VK. Nanomaterial and polymer membranes. Synthesis, characterization, and applications, Elsevier, Amsterdam, The Netherlands 2016.
doi: 10.1016/C2013-0-19381-6
Skinner K, Wright N, Porter E. Mercury uptake and acumulation by four species of aquatic plants, Environmental Pollution, 145: 234-237, 2007.
doi: 10.1016/j.envpol.2006.03.017
Solis R, Lopez G, Bautista R, Hernandez J, Romellon M. Evaluación de humedales artificiales de flujo libre y subsuperficial en la remoción de contaminantes de aguas residuales utilizando diferentes especies de vegetación macrófita, Interciencia, 42: 40-47, 2016.
Swearingen J, Saltonstall K. Phragmites field guide: Distinguishing native and exotic forms common reed (Phragmites australis) in the United States, Plant conservation alliance, weeds gone wild, 2010.
Tka N, Jabli M, Saleh TA, Salman GA. Amines modified fibers obtained from natural populus tremula and their rapid biosorption of acid blue 25, Journal of Molecular Liquids, 250: 423-320, 2018.
doi: 10.1016/j.molliq.2017.12.026
Topaloglu D, Tilki YM, Aksu S, Yilmaz TN, Celebi EE, Oncel S, Aydiner C. Novel technological solutions for eco protective water supply by economical and sustainable seawater desalination, Chemical Engineering Research and Design, 136: 177-198, 2018.
doi: 10.1016/j.cherd.2018.04.022
Tuzen M, Sarı A, Saleh TA. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite, Journal of Environmental Management, 206: 170-177, 2018.
doi: 10.1016/j.jenvman.2017.10.016
Üstün GE. Occurrence and removal of metals in urban wastewater treatment plants, Journal of Hazardous Materials, 172: 833-838, 2009.
doi: 10.1016/j.jhazmat.2009.07.073
Vidoni R, Pacini V, Ingallinella A, Sanguinetti G. Remoción de arsénico, hierro y manganeso en agua subterránea en planta piloto ubicada en una escuela rural, Revista Electrónica del Comité del Medio Ambiente, 1: 105-107, 2010.
Vymazala J, Švehlab J. Iron and manganese in sediments of constructed wetlands with horizontal subsurface flow treating municipal sewage, Ecological Engineering, 50: 69-75, 2013.
doi: 10.1016/j.ecoleng.2012.04.027
Wang M, Zhang DQ, Dong JW, Tan SK. Constructed wetlands for wastewater treatment in cold climate A Review, Journal of Environmental Sciences, 57: 293-311, 2017.
doi: 10.1016/j.jes.2016.12.019
Xiu QM, Yang Y, Fung YN, Wen YW, Li L. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater, Water Research, 50: 147-159, 2014.
doi: 10.1016/j.watres.2013.12.004