Evaluation of two sample preparation methods for the determination of cadmium, nickel and lead in natural foods by Graphite Furnace Atomic Absorption Spectrophotometry
##plugins.themes.bootstrap3.article.details##
Environmental pollution allows heavy metals to interact with ecosystems, bioaccumulating and passing through the food chain. Animals and human scan consume contaminated species and reach toxic and harmful concentrations in their organisms. While there are international regulatory frameworks for heavy metal contents, these are not always known or suitable for local conditions. This situation calls for the development of locally-applicable analytical methods for the determination of heavy metal concentrations in common vegetal and animal food products. Two established methods (AOAC999.11, based on sample drying and calcination, and IPNAC-06-00, based on microwave-assisted acid digestion) were comparatively tested at the CESAQ-PUCE laboratory in Quito, Ecuador, to determine their suitability. Sample matrices used were non industrial, non-organic tomato, lettuce, and beef commonly found in local markets. Heavy metals tested were cadmium, nickel, and lead. Test guidelines and comparative parameters were based on AOAC(2002) and included quantification limits, repeatability variation coefficients, intermediate precision percentages, accuracy and calculated expanded uncertainties. Unlike method AOAC999.11, method IPNAC 06-00 performance for all parameters was with in the range of recommended expected values as per AOAC, and was therefore deemed more suitable to be applied under the local CESAQ-PUCE laboratory conditions. The validation of method IPNAC-06-00 demonstrated its local applicability. In addition, IPNAC 06-00 can beused by similar laboratories to assess contaminants concentrations and improve the base line information concerning human exposure to toxic metals.
Heavy metal concentrations, microwave-assisted acid digestion, natural food, graphite furnace, AOAC, CESAQ-PUCE
http://img.21food.cn/img/biaozhun/20100108/177/11285282.pdf
AOAC. Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. AOAC International, 1-38, 2002.
APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. (L. S. C. Eugene W. Rice, Rodger B. Baird, Andrew D. Eaton, Ed.) 22nd ed, 2012. Maryland: APHA, AWWA, WEF.
Astete J, Gastañaga MC, Pérez D. Niveles de metales pesados en el ambiente y su exposición en la pobblación luego de cinco años de exploración minera en las Bambas, Perú 2010, Revista Peruana de Medicina Experimental y Salud Pública, 31(4): 695-701, 2014.
doi: 10.17843/rpmesp.2014.314.120
Bakkali K, Ramos N, Souhail B, Ballesteros E. Characterization of trace metals in vegetables by graphite furnace atomic absorption spectrometry after closed vessel microwave digestion, Food Chemistry, 116(2), 590-594, 2009.
doi: 10.1016/j.foodchem.2009.03.010
Bernard A. Confusion about cadmium risks: The unrecognized limitations of an extrapolated paradigm, Environmental Health Perspectives, 124(1): 1-5, 2016.
doi: 10.1289/ehp.1509691
Brizio P, Benedetto A, Squadrone S, Curcio A, Pellegrino M, Ferrero M, Abete MC. Heavy metals and essential elements in Italian cereals, Food Additives & Contaminants: Part B, 9(4): 261-267, 2016.
doi: 10.1080/19393210.2016.1209572
Calle MB, Devesa V, Fiamegos Y, Vélez D. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry, Journal of Visualized Experiments, 112(September): 1-8, 2017.
doi: 10.3791/55953
CIIEMAD-IPN. Método general por microondas de digestión ácida en matrices ambientales, 0, 1-15, 2011.
http://www.ciiemad.ipn.mx/SGC/Documents/Procedimientos/IPN_AC-06-00.pdf
de Oliveira TM, Peres JA, Felsner ML, Justi KC. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries, Food Chemistry, 229: 721-725, 2017.
doi: 10.1016/j.foodchem.2017.02.143
Díaz O, Encina F, Recanarren E, Del Valle S, Pastene R, Montes S, Figueroa A. Estudio de la concentración de arsénico, mercurio, plomo y fenantreno en la macha (Mesodesma donacium. Implicancias alimentarias y toxicológicas, Revista Chilena de Nuricion, 35(1): 53-60, 2008.
doi: 10.4067/S0717-75182008000100007
El Comercio. En la Sierra hay seis tipos de lechugas, Actualidad - Negocios, p. 3, 2011a.
https://www.elcomercio.com/actualidad/negocios/sierra-hay-seistipos-de.html
El Comercio. Ocho variedades de tomate riñón están en los mercados locales, Actualidad - Negocios, pp. 24-26, 2011b.
https://www.elcomercio.com/actualidad/negocios/ocho-variedadesde-tomate-rinon.html
El Comercio. En ocho provincias se concentra el mayor consumo de cárnicos, Revista Líderes, p. 3, 2015.
https://www.revistalideres.ec/lideres/consumo-carnicos-ecuador.html
El Telégrafo. Los ecuatorianos consumen 142 gramos de carnes al día, Sociedad, pp. 4-5, 2015.
https://www.eltelegrafo.com.ec/noticias/sociedad/6/los-ecuatorianosconsumen- 142-gramos-de-carnes-al-dia
FAO/WHO. Acerca del Codex. FAO. 2016.
http://www.fao.org/fao-who-codexalimentarius/about-codex/es/
FAO/WHO. Norma General para los Contaminantes y las Toxinas Presentes en los Alimentos y Piensos Codex 193-1995, 2018.
Felix I, Mite F, Carrillo M, Pino M. Avances De Investigacion Del Proyecto Determinación de Metales Contaminantes en Cultivos de Exportación y su Repercusion sobre la Calidad de los Mismos, VIII Congreso Ecuatoriano de La Ciencia Del Suelo, 1-8, 1986.
Foro Interguvernamental de Seguridad Química. Metales pesados: ¿necesidad de más acciones globales? Informe de evento paralelo de Suiza 23 de septiembre de 2006, Foro Interguvernamental de Seguridad Química (IFCS), 41(22): 1-16, 2006.
García-Rico L, Jara-Marini, M. Aplicación de Microondas en la Digestión de Hígado de Bovino para la Cuantificación de Metales Pesados, Contaminación Ambiental, 12(l): 41-44, 1996.
Harangozo L. Risk elements in selected types of vegetables, Potravinarstvo, 10(1): 625-630, 2016.
https://doi.org/10.5219/654
INEN. Catálogo de Normas Técnicas. Quito: INEN, (2016).
http://apps.normalizacion.gob.ec/descarga/
International Programme on Chemical Safety. Nickel, nickel carbonyl, and some nickel compounds Health and Safety Guide (HSG 62), 1991.
http://www.inchem.org/documents/hsg/hsg/hsg062.htm
International Programme on Chemical Safety. Environmental Health Criteria: Cadmium (EHC 134), The International Programme on Chemical Safety (IPCS). 1992.
http://www.inchem.org/documents/ehc/ehc/ehc134.htm
International Programme on Chemical Safety. Environmental Health Criteria: Inorganic lead (EHC 165). 1995. http://www.inchem.org/documents/ehc/ehc/ehc165.htm
Lasat MM. The Use of Plants for the Removal of Toxic Metals from Contaminated Soil, American Association for the Advancement of Science National Service Center for Environmental Publications (NSCEP), 2000.
Lavado-García J, Puerto-Parejo L, Roncero-Martín R, Moran J, Pedrera-Zamorano J, Aliaga IJ,Canal-Macias M. Dietary Intake of Cadmium, Lead and Mercury and Its Association with Bone Health in Healthy Premenopausal Women, International Journal of Environmental Research and Public Health, 14(12): 1437, 2017.
doi: 10.3390/ijerph14121437
Lozano Soldevilla G. Metales pesados: aportaciones al estudio toxicológico de especies y alimentos marinos en las Islas Canarias. Universidad de la Rioja. 2009.
https://dialnet.unirioja.es/servlet/tesis?codigo=38669
Martínez Z, González MS, Paternina J, Cantero M. Contaminación de suelos agrícolas por metales pesados, zona minera El Alacrán, Córdoba-Colombia, Temas Agrarios, 22(2): 20-32, 2017.
doi: 10.21897/rta.v22i2.941
Nava-Ruíz C, Méndez-Armenta M. Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio), Archives of Neuroscience, 16(3): 140-147, 2011.
Pérez-Martínez I, Romero FM. Uso de parámetros indirectos para la evaluación de la contaminación de suelos por metales pesados en una zona minera de San Luis Potosí, México. Boletín de La Sociedad Geológica Mexicana, 67(1): 1-12, 2015.
Perkin Elmer. User manual AAnalyst 400 AA Spectrometer. Waltham: Perkin Elmer. 2004.
Ponce R, Farias S, Bovi Mitre G, Vélez D, Montoro R. Determinación de arsénico total e inorgánico en carne y vísceras de camélidos (Lamina glama ) autóctonos de la provincia de Jujuy, Argentina, Revista Facultad de Agronomía de la UBA, 26(1): 105-109, 2006.
Qureshi AS, Hussain MI, Ismail S, Khan QM. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater, Chemosphere, 163: 54-61, 2016.
doi: 10.1016/j.chemosphere.2016.07.073
Rubio C, Gutiérrez AJ, Martín-Izquierdo RE, Revert C, Lozano G, Hardisson A. El plomo como contaminante alimentario, Revista de Toxicología, 21(2-3): 72-80, 2004.
Ruiz Chaves I. Metodologías analíticas utilizadas actualmente para la determinación de mercurio en músculo de pescado, Medio Ambiente y Salud, 16(26): 113-122, 2016.
doi: 10.15517/PA.V16I26.25187
Silva Trejos P. Digestión en horno de microondas para determinación de contenido de hierro y zinc totales en alimentos, Tecnología En Marcha, 25: 96-100, 2012.
doi: 10.18845/tm.v25i3.461
Vigneri R, Malandrino P, Gianì F, Russo M, Vigneri P. Heavy metals in the volcanic environment and thyroid cancer, Molecular and Cellular Endocrinology, 457(5): 73-80, 2017.
doi: 10.1016/j.mce.2016.10.027