Probing the Pharmacological Binding Properties, and Reactivity of Selective Phytochemicals as Potential HIV-1 protease Inhibitors
PDF

Keywords

HIV-1
Phytochemicals
Protease
Molecular docking
DFT
ADMET

How to Cite

Probing the Pharmacological Binding Properties, and Reactivity of Selective Phytochemicals as Potential HIV-1 protease Inhibitors. (2019). Universitas Scientiarum, 24(3), 441-464. https://doi.org/10.11144/Javeriana.SC24-3.artf
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

The HIV-1 protease plays an essential role in the replication cycle of HIV-1; therefore there is a direct need to develop novel inhibitors of the HIV-1 protease, which can cease the viral replication. The present study targets the discovery of potential inhibitors of HIV-1 protease from a set of phytochemicals. From 2505 phytochemicals, 108 compounds were docked, after screening, with the HIV-1 protease to analyze their inhibitory potential against the protease. DFT analysis was also conducted to study the reactivity of strongly docked compounds. Out of 108 phytochemicals, 38 compounds showed binding affinity greater than the desired threshold. Reactivity of these 38 inhibitors was also high as compared to other compounds, based on the DFT results. These results suggest that the selected 38 phytochemicals are drug candidates and they have the potential to be effectively used against HIV in the future.

PDF

Siuki HA, Peyman N, Vahedian-Shahroodi M, Gholian-Aval M, Tehrani H. Health education intervention on HIV/AIDS prevention behaviors among health volunteers in healthcare centers: An applying the theory of planned behavior, Journal of Social Service Research, 1-7, 2018.

doi: 10.1080/01488376.2018.1481177

Sobieski M, Przystupski D, Korzeniewska A, Kwiatkowski S, Górska A, Kotowski K, Baczyńska D. A review of current literature on the diagnosis, prophylaxis and treatment of HIV/ AIDS, World Scientific News, 110: 129-146, 2018.

http://www.worldscientificnew .com/wp-content/uploads/2018/08/WSN-110-2018-129-146-1.pdf

Lawn SD, Butera ST, Folks TM.. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection, Clinical microbiology reviews, 14: 753-777, 2001.

doi: 10.1128/CMR.14.4.753-777.2001

Fauci AS, Lane HC. Harrison's Internal Medicine, AccessMedicine, McGraw-Hill Education, New York, USA 2008.

Joint United Nations Programme on HIV/AIDS, UNAIDS Data, 2017.

https://www.unaids.org/en/keywords/unaids-joint-united-nationsprogramme-hivaids

Wlodawer A, Erickson JW. Structure-based inhibitors of HIV-1 protease, Annual review of biochemistry, 62: 543-585,1993.

doi: 10.1146/annurev.bi.62.070193.002551

McQuade T, Tomasselli A, Liu L, Karacostas V, Moss B, Sawyer T, Heinrikson R, Tarpley W. A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation, Science, 247: 454-456, 1990.

doi: 10.1126/science.2405486

Gulick RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D, Richman DD, Valentine FT, Jonas L, Meibohm A. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy, New England Journal of Medicine, 337: 734-739, 1997.

doi: 10.1056/NEJM199709113371102

Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD. Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387: 188, 1997.

doi: 10.1038/387188a0

Clavel F, Hance AJ. HIV drug resistance, New England Journal of Medicine, 350: 1023-1035, 2004.

doi: 10.1056/NEJMra025195

Veljkovic V, Mouscadet J-F, Veljkovic N, Glisic S, Debyser Z. Simple criterion for selection of flavonoid compounds with anti-HIV activity, Bioorganic & medicinal chemistry letters, 17: 1226-1232, 2007.

doi: 10.1016/j.bmcl.2006.12.029

Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification, Journal of the American Chemical Society, 115: 6506-6509, 1993.

doi: 10.1021/ja00068a005

Condra JH, Schleif WA, Blahy OM, Gabryelski LJ, Graham DJ, Quintero J, Rhodes A, Robbins HL, Roth E, Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature, 374: 569-571, 1995.

doi: 10.1038/374569a0

Lindegaard B, Keller P, Bruunsgaard H, Gerstoft J, Pedersen B. Low plasma level of adiponectin is associated with stavudine treatment and lipodystrophy in HIV-infected patients, Clinical & Experimental Immunology, 135: 273-279, 2004.

doi: 10.1111/j.1365-2249.2004.02367.x

Wiltink E. Antiviral drugs: present status and future prospects, The International journal of biochemistry, 26: 621-630, 1994.

doi: 10.1016/0020-711X(94)90161-9

Tewtrakul S, Subhadhirasakul S, Puripattanavong J, and Panphadung T. HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt, Songklanakarin Journal Science Technology, 25(4):503-508, 2003.

http://rdo.psu.ac.th/sjstweb/Volume.php?Vol=25-4

Wadood A, Ghufran M, Jamal SB, Naeem M, Khan A, Ghaffar R. Phytochemical analysis of medicinal plants occurring in local area of Mardan, Biochemistry & Analytical Biochemistry, 2: 1-4, 2013.

doi: 10.4172/2161-1009.1000144

Hussain W, Qaddir I, Mahmood S, Rasool N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening, VirusDisease, 29(2):147-156, 2018.

doi: 10.1007/s13337-018-0446-4

Rasool N, Ashraf A, Waseem M, Hussain W, Mahmood S. Computational exploration of antiviral activity of phytochemicals against NS2B/NS3 proteases from dengue virus, Turkish Journal of Biochemistry, 44: 1-17, 2018.

doi: 10.1515/tjb-2018-0002

Delgado-Jaime MU, DeBeer S. Expedited analysis of DFT outputs: Introducing moanalyzer, Journal of computational chemistry, 33(27): 2180-2185, 2012.

doi: 10.1002/jcc.23028

Tayade NT, Shende AT, Tirpude MP. DFT study of L-alanine’s crystal, molecule and three linear molecules for optoelectronic behavior, International Journal of Scientific Research in Physics and Applied Sciences, 6(4): 23-27, 2018.

doi: 10.26438/ijsrpas/v6i4.2327

Qaddir I, Rasool N, Hussain W, Mahmood S. Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies, Journal of vector borne diseases, 54(3): 255-262, 2017.

doi: 10.4103/0972-9062.217617

Ramalingam M, Karthikeyan S, Kumar D. Docking Studies of HIV-1 Protease with Phytochemicals from Mappia Foetida, International Journal of Computer Applications, 43(4): 16-22, 2012.

doi: 10.5120/6091-8272

Senthilvel P, Lavanya P, Kumar KM, Swetha R, Anitha P, Bag S, Sarveswari S, Vijayakumar V, Ramaiah S, Anbarasu A. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly, Bioinformation, 9(18): 889-895, 2013.

doi: 10.6026/97320630009889

Ibrahim AK, Radwan MM, Ahmed SA, Slade D, Ross SA, ElSohly MA, Khan IA. Microbial metabolism of cannflavin A and B isolated from Cannabis sativa, Phytochemistry, 71: 1014-1019, 2010.

doi: 10.1016/j.phytochem.2010.02.011

Barros IBd, Daniel JFdS, Pinto JP, Rezende MI, Braz Filho R, Ferreira DT. Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens, Brazilian Archives of Biology and Technology, 54(3): 535-541,2011.

doi: 10.1590/S1516-89132011000300015

Sagbo IJ. Phytochemical analysis and antibacterial properties of aqueous and ethanol extracts of brachylaena elliptica (thurb.) dc. and brachylaena ilicifolia (lam.) phill. & schweick, Master of Science:

Biochemistry Dissertation, University of Fort Hare, 2015.

https://core.ac.uk/download/pdf/145051887.pdf

Murphy BT, Cao S, Norris A, Miller JS, Ratovoson F, Andriantsiferana R, Rasamison VE, Kingston DG. Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest, Journal of natural products, 68(3): 417-419, 2005.

doi: 10.1021/np049639x

Rao C, Verma A, Gupta P, Vijayakumar M. Anti-inflammatory and anti-nociceptive activities of Fumaria indica whole plant extract in experimental animals, Acta Pharmaceutica, 57(4): 491-498, 2007.

doi: 10.2478/v10007-007-0039-z

Pezzuto JM, Beecher C, Fong H, Farnsworth NR, Mehta RG, Moon RC, Hedayat S, Udeani GO, Moriarty R, Kinghom A. Discovery and characterization of natural product cancer chemopreventive agents, Atta-ur-Rahman and M. Iqbal (eds.), New

Trends in Natural Product Chemistry, Harwood Academic Publishers:

Chur, Switzerland: 95-107,1998.

Wu X, Liao H, Wu K, Cui L. Chemical constituents from the seeds of Amorpha fruticosa and their chemotaxonomic significance, Open Access Library Journal, 3: 1-7, 2016.

doi: 10.4236/oalib.1102740

Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, Druzhilovsky DS. Chemo-and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review, Natural product reports, 31: 1585-161, 2014.

doi: 10.1039/c4np00068d

Wishart DS. Online Databases and Web Servers for Drug Metabolism Research. Edited by Johannes Kirchmair, Wiley Publishers, New Jersey, US, 2014.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced drug delivery reviews, 46(1-3): 3-26, 2001.

doi: 10.1016/S0169-409X(00)00129-0

Duchowicz PR, Talevi A, Bellera C, Bruno-Blanch LE, Castro EA. Application of descriptors based on Lipinski’s rules in the QSPR study of aqueous solubilities, Bioorganic & medicinal chemistry, 15(11): 3711-3719, 2007.

doi: 10.1016/j.bmc.2007.03.044

Kavitha R, Karunagaran S, Chandrabose SS, Lee KW, Meganathan C. Pharmacophore modeling, virtual screening, molecular docking studies and density functional theory approaches to identify novel ketohexokinase (KHK) inhibitors, Biosystems, 138: 39-52, 2015.

doi: 10.1016/j.biosystems.2015.10.005

Sakkiah S, Lee KW. Pharmacophore-based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors, Acta Pharmacologica Sinica, 33: 964-978, 2012.

doi: 10.1038/aps.2012.21

Sathyanarayanmoorthi V, Karunathan R, Kannappan V. Molecular modeling and spectroscopic studies of Benzothiazole, Journal of Chemistry, 2013: 14, 2013.

doi: 10.1155/2013/258519

Queiroz AN, Gomes BA, Moraes Jr WM, Borges RS. A theoretical antioxidant pharmacophore for resveratrol, European journal of medicinal chemistry, 44(4): 1644-1649, 2009.

doi: 10.1016/j.ejmech.2008.09.023

Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.