Published Jul 19, 2018


Google Scholar
Search GoogleScholar

Ainhoa Rubio-Clemente

Edwin L Chica

Gustavo A Peñuela



Due to the health risks for both humans and living beings caused by polycyclic aromatic hydrocarbons (PAHs), the monitoring of these compounds in environmental matrices is mandatory. This work proposes an analytical method for analyzing anthracene (AN) and benzo[a]pyrene (BaP), two of the most representative PAHs, at ultra-trace concentrations in water, employing direct injection of large volumes of samples coupled with reversed-phase high-performance liquid chromatography. For this purpose, principal component analysis was used to examine the behavior of AN and BaP within the chromatographic system. Results showed that AN and BaP chromatographic behavior can be described by three models representing their identification, the quantification of AN and that of BaP, respectively. The factors affecting the obtained models, such as the injection volume, column temperature, flow rate, strength of the mobile phase, and the excitation and emission wavelengths, were examined and optimized by means of design of experiments. Finally, the analytical method was validated, obtaining promising limits of detection and quantification. The developed analytical method was demonstrated to be useful for a sensitive analysis of the target analytes in relatively clean natural water matrices.


anthracene, benzo[a]pyrene, designofexperiments, matrix constituents, ultra-tracelevel, principal component analysis

Ahmadvand M, Sereshti H, Parastar H. Chemometric-based determination of polycyclic aromatic hydrocarbons in aqueous samples using ultrasound-assisted emulsification microextration combined to gas chromatography mass spectrometry, Journal of Chromatography A, 1413: 117–126, 2015.
doi: 10.1016/j.chroma.2015.08.026

Alves CA, Vicente AM, Custódio D, Cerqueira M, Nunes T, Pio C, Lucarelli F, Calzolai G, Nava S, Diapouli E, Eleftheriadis K, Querol X, Musa BA. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM 2.5 from Southern European cities, Science of the Total Environment, 595: 494-504, 2017.
doi: 10.1016/j.scitotenv.2017.03.256

Andrade-Eiroa A, Dievart P, Dagaut P. Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reversed-phase high-performance liquid chromatography by using factorial design and response surface methodology, Talanta, 81(1-2): 265-274, 2010.
doi: 10.1016/j.talanta.2009.11.068

Anumol T, Wu S, Marques M, Daniels KD, Snyder SA. Rapid direct injection LC-MS/MS method for analysis of prioritized indicator compounds in wastewater effluent, Environmental Science: Water Research & Technology, 2015(1): 632-643, 2015.
doi: 10.1039/c5ew00080g

Boix C, Ibáñez M, Sancho JV, Rambla J, Aranda JL, Ballester S, Hernández F. Fast determination of 40 drugs in water using large volume direct injection liquid chromatography-tandem mass spectrometry, Talanta, 131: 719-727, 2015.
doi: 10.1016/j.talanta.2014.08.005

Bourdat-Deschamps M, Daudin JJ, Barriuso E. An experimental design approach to optimise the determination of polycyclic aromatic hydrocarbons from rainfall water using stir bar sorptive extraction and high performance liquid chromatography-fluorescence detection, Journal of Chromatography A, 1167(2): 143-153, 2007.
doi: 10.1016/j.chroma.2007.08.025

Buczyńska AJ, Geypens B, van Grieken R, de Wael K. Large-volume injection combined with gas chromatography/isotope ratio mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, Rapid Communications in Mass Spectrometry, 28: 200-208, 2014.
doi: 10.1002/rcm.6769

Chizhova T, Hayakawa K, Tishchenko P, Nakase H, Koudryashova Y. Distribution of PAHs in the northwestern part of the Japan Sea, Deep-Sea Research Part II: Tropical Studies in Oceanography, 86-87: 19-24, 2013.
doi: 10.1016/j.dsr2.2012.07.042

Dejaegher B, Vander Y. The use of experimental design in separation science, Acta Chromatographica, 21: 161-201, 2009.
doi: 10.1556/achrom.21.2009.2.1

Dejaegher B, Vander Y. Experimental designs and their recent advances in set-up, data interpretation and analytical applications, Journal of Pharmaceutical and Biomedical Analysis, 56(2): 141-158, 2011.
doi: 10.1016/j.jpba.2011.04.023

Directive 2013. Directive 2013/39/EU of the European parliament and of the council of 12 August 2013 amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, Official Journal of the European Union L, 226: 1-17.
Retrieved from:

Dos Santos IF, Ferreira SLC, Domínguez C, Bayona JM. Analytical strategies for determining the sources and ecotoxicological risk of PAHs in river sediment, Microchemical Journal, 137: 90-97, 2018.
doi: 10.1016/j.microc.2017.09.025

Ferreira SLC, Bruns RE, da Silva EGP, dos Santos WLN, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB. Statistical designs and response surface techniques for the optimization of chromatographic systems, Journal of Chromatography A, 1158: 2-14, 2007.
doi: 10.1016/j.chroma.2007.03.051

Golobočanin DD, Škrbić BD, Miljević NR. Principal component analysis for soil contamination with PAHs, Chemometrics and Intelligent Laboratory Systems, 72(2): 219-223, 2004.
doi: 10.1016/j.chemolab.2004.01.017

Hanrahan G, Lu K. Application of factorial and response surface methodology in modern experimental design and optimization, Critical Reviews in Analytical Chemistry, 36(3-4): 141-151, 2006.
doi: 10.1080/10408340600969478

Jones RN. The ultraviolet absorption spectra of anthracene derivatives, Chemical Reviews, 41(2): 353-371, 1947.
doi: 10.1021/cr60129a013

Khodaee N, Mehdinia A, Esfandiarnejad R, Jabbari A. Ultra trace analysis of PAHs by designing simple injection of large amounts of analytes through the sample reconcentration on SPME fiber after magnetic solid phase extraction, Talanta, 147: 59-62, 2016.
doi: 10.1016/j.talanta.2015.09.025

Lucio-Gutiérrez JR, Salazar-Cavazos ML, Waksman NH, Castro-Ríos R. Solid-phase microextraction followed by high-performance liquid chromatography with fluorimetric and UV detection for the determination of polycyclic aromatic hydrocarbons in water, Analytical Letters, 41(1):119-136, 2008.
doi: 10.1080/00032710701746758

Machala M, Dusek L, Hilscherova K, Kubinova R, Jurajda P, Neca J, Ulrich R, Gelnar M, Studnickovà Z, Holoubek, I. Determination and multivariate statistical analysis of biochemical responses to environmental contaminants in feral freshwater fish Leuciscus cephalus L, Environmental Toxicology and Chemistry, 20(5): 1141-1148, 2001.
doi: 10.1002/etc.5620200528

Martinez E, Gros M, Lacorte S, Barceló D. Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels, Journal of Chromatography A, 1047(2): 181-188, 2004.
doi: 10.1016/s0021-9673(04)01100-8

Menezes HC, Paiva MJ, Santos RR, Sousa LP, Resende SF, Saturnino JA, Paulo BP, Cardeal ZL. A sensitive GC/MS method using cold fiber SPME to determine polycyclic aromatic hydrocarbons in spring water, Microchemical Journal, 110: 209-214, 2013.
doi: 10.1016/j.microc.2013.03.010

Nawaz MS, Ferdousi FK, Rahman MA, Alam AM. Reversed phase SPE and GC-MS study of polycyclic aromatic hydrocarbons in water samples from the river Buriganga, Bangladesh, International Scholarly Research Notices, 2014: 1-9, 2014.
doi: 10.1155/2014/234092

Nikitas P, Pappa-Louisi A, Tsoumachides S, Jouyban A. A principal component analysis approach for developing retention models in liquid chromatography, Journal of Chromatography A, 1251: 134-140, 2012.
doi: 10.1016/j.chroma.2012.06.049

Petridis NP, Sakkas VA, Albanis TA. Chemometric optimization of dispersive suspended microextraction followed by gas chromatographymass spectrometry for the determination of polycyclic aromatic hydrocarbons in natural water, Journal of Chromatography A, 1355: 46-52, 2014.
doi: 10.1016/j.chroma.2014.06.019

Qi X, Zhu L, Wang C, Zhang H, Wang L, Qian H. Development of standard fingerprints of naked oats using chromatography combined with principal component analysis and cluster analysis, Journal of Cereal Science, 74: 224-230, 2017.
doi: 10.1016/j.jcs.2017.02.009

Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environment International, 75: 35-51, 2015.
doi: 10.1016/j.envint.2014.10.027

Rubio A, Chica EL, Peñuela GA. Wastewater treatment processes for the removal of emerging organic pollutants, Ambiente & Água-An Interdisciplinary Journal of Applied Science, 8(3): 93-103, 2013.
doi: 10.4136/ambi-agua.1176 645

Rubio-Clemente A, Chica E, Peñuela GA. Application of Fenton process for treating petrochemical wastewater, Ingeniería y Competitividad, 16(2): 211–223, 2014a.

Rubio-Clemente A, Chica E, Peñuela GA. Petrochemical wastewater treatment by photo-Fenton process, Water, Air, & Soil Pollution, 226: 1-18, 2015.
doi: 10.1007/s11270-015-2321-x

Rubio-Clemente A, Chica E, Peñuela G. Rapid determination of anthracene and benzo(a)pyrene by high performance liquid chromatography with fluorescence detection, Analytical Letters, 50(8): 1229-1247, 2017.
doi: 10.1080/00032719.2016.1225304

Rubio-Clemente A, Torres-Palma RA, Peñuela GA. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review, Science of the Total Environment, 478: 201-225, 2014b.
doi: 10.1016/j.scitotenv.2013.12.126

Santos LO, dos Anjos JP, Ferreira SL, de Andrade JB. Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS, Microchemical Journal, 133: 431-440, 2017.
doi: 10.1016/j.microc.2017.04.012

Segura A, Hernández-Sánchez V, Marqués S, Molina L. Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs, Science of the Total Environment, 590-591: 381-393, 2017.
doi: 10.1016/j.scitotenv.2017.02.180

Thomas O, Burgess C. UV-visible spectrophotometry of water and wastewater (Vol. 27). Elsevier Science, The Netherlands, 2007.

Tian W, Bai J, Liu K, Sun H, Zhao Y. Occurrence and removal of polycyclic aromatic hydrocarbons in the wastewater treatment process, Ecotoxicology and Environmental Safety, 82: 1-7, 2012.
doi: 10.1016/j.ecoenv.2012.04.020

Trably E, Delgènes N, Patureau D, Delgènes JP. Statistical tools for the optimization of a highly reproducible method for the analysis of polycyclic aromatic hydrocarbons in sludge samples, International Journal of Environmental Analytical Chemistry, 84(13): 995-1008, 2004.
doi: 10.1080/03067310412331298412

Zsila F, Matsunaga H, Bikádi Z, Haginaka J. Multiple ligand-binding properties of the lipocalin member chicken α 1-acid glycoprotein studied by circular dichroism and electronic absorption spectroscopy: The essential role of the conserved tryptophan residue, Biochimica et Biophysica Acta (BBA)-General Subjects, 1760(8): 1248-1273, 2006.
doi: 10.1016/j.bbagen.2006.04.006
How to Cite
Rubio-Clemente, A., Chica, E. L., & Peñuela, G. A. (2018). Direct large-volume injection analysis of polycyclic aromatic hydrocarbons in water. Universitas Scientiarum, 23(2), 171–189.
Bioquímica / Biochemistry / Bioquímica