A raypath-consistent receiver correction in PS converted wave processing through seismic interferometry: New application for tropical zones New application for tropical zones
##plugins.themes.bootstrap3.article.details##
The estimation of static corrections is an issue still unsolved for PS converted wave processing. Due to the PS converted wave usually arriving at the surface at non-zero angles, the surface consistent approach is no longer valid, and corrections become non-stationary, i.e. the correction is not static. Seismic interferometry is used in receiver gathers transformed to the radial domain to estimate functions that contain the delay caused by the weathered layer, considering the emergence angle of the PS converted wave. Inverse filters, derived from these functions, are applied by convolution to the raw traces to supply traces corrected for weathering layer effects. Seismic interferometry was satisfactorily tested in two synthetic models and then applied to a 2C seismic line from the Llanos Basin (Colombia). This is the first application of the technique in Colombia, initially developed for permafrost zones, with different assumptions and surface complexity; and it resulted in an improved PS converted wave image.
Seismic Interferometry, Image processing, PS converted-waves
doi: 10.1190/1.2216190
Buitrago C. Caracterización de formación mediante relación Vp/Vs obtenidas con procesamiento de ondas P y PS. Ms. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia. 2016.
h t t p : / / w w w. b d i g i t a l . u n a l . e d u . c o / 5 7 0 5 9 / 7 /CarolinaBuitragoTorres.2016.pdf
Claerbout J. Slant-stacks and radial traces. Technical report, Stanford Exploration Project report 5, Stanford University. 1-12. 1975.
Cova R, Henley D, Wei X, Innanen, K. Receiver-side near-surface corrections in the τ-p domain: A raypath consistent solution for converted wave processing, Geophysics, 82(2): U13-U23. 2017.
doi: 10.1190/geo2016-0278.1
Cova R, Henley D, Innanen KA. Computing near-surface velocity models for S-wave static corrections using raypath interferometry, Geophysics, 83(3): U23-U34. 2018.
doi: 10.1190/geo2017-0340.1
Guevara S, Margrave G, Isaac H. A method for converted wave receiver statics correction in the CRG domain, SEG Technical Program Expanded Abstracts, 2134-2137, 2015.
doi: 10.1190/segam2015-5906814.1
Henley D. Interferometric application of static corrections, Geophysics, 77(1): Q1-Q13. 2012.
doi: 10.1190/geo2011-0082.1
Lu H, Hall K. Tutorial: Converted wave (2D PS) processing, Crewes Research Report, 15(1): 1-18. 2003.
Schuster G. Seismic Interferometry, Cambridge University Press, New York, United States of America, 274 pp. 2009.
Sheriff R. Encyclopedic Dictionary of Applied Geophysics. Tulsa, OK: Society of Exploration Geophysicists, 1991. First edition.
Wapenaar K, Draganov D, Snieder R, Campman X, Verdel A. Tutorial on seismic interferometry. Part I: Basic principles and applications, Geophysics, 75(5): 75A195-75A209. 2010a.
doi: 10.1190/1.3457445
Wapenaar K, Slob E, Snieder R, Curtis A. Tutorial on seismic interferometry: Part 2 - Underlying theory and new advances, Geophysics, 75(5): 75A211-75A227. 2010b.
doi: 10.1190/1.3463440