Abstract
Currently, the obtention of nano-structures based on III-V materials is expensive. This calls for novel and inexpensive nanostructure manufacturing approaches. In this work we report on the manufacture of a nanostructures consisting of alternating layers of In and GaAs on a silicon substrate by magnetron sputtering. Furthermore, we characterized the produced nanostructures using secondary ion mass spectroscopy (SIMS), X-ray diffraction analysis, and Raman spectroscopy. SIMS revealed variation in the concentration of In atoms across In/GaAs/In interphases, and X-ray diffraction revealed planes corresponding to phases associated with GaAs and InAs due to In interfacial diffusion across GaAs layers. Finally, in order to study the composition and crystalquality of the manufactured nanostaructures, Raman spectra were taken using laser excitation lines of 452 nm, 532 nm, and 562 nm at different points across the nanostructures.This allowed to determine the transverse and longitudinal optical modes of GaAs and InAs,characteristic of a two-mode behavior. An acoustic longitudinal vibrational mode LA(Γ) of GaAs and an acoustic longitudinal mode activated by disorder (DALA) were observed. These resulted from the substitution of Ga atoms for In atoms in high concentrations due to the generation of Ga(VGa) and/or Arsenic(VAs) vacancies.This set of analyses show that magnetron sputtering can be aviable and relatively low-cost technique to obtain this type of semiconductors.
Tatavartia SR, Bittner ZS, Wibowo A, Slocum MA, Nelson G, Kum H, Ahrenkiel SP, Hubbard SM. Epitaxial Lift-off (ELO) of InGaP/GaAs/InGaAs solar cells with quantum dots in GaAs middle sub-cell, Solar Energy Materials and Solar Cells, 185: 153-157, 2018.
doi: 10.1016/j.solmat.2018.05.016
Bruzzi M, Baldi A, Ennio, Carnevale A, Catelani M, Ciani L. Conversion efficiency of Si-InGaAs and GaAsP-Si-Ge lateral beam splitting photovoltaic devices, Measurement, 119: 102-107, 2018.
doi: 10.1016/j.measurement.2018.01.035
Bimberg D. Semiconductor nanostructures for flying q-bits and green photonics, Nanophotonics, 7: 1245-1257, 2018.
doi: 10.1515/nanoph-2018-0021
Ali LM, Abed FA. Investigation the absorption efficiency of GaAs/InGaAs nanowire solar Cells, Optical Materials, 72: 650- 653, 2017.
doi: 10.1016/j.optmat.2017.07.014
Tex DM, Nakamura T, Imaizumi M, Ohshima T, Kanemitsu Y. Direct evaluation of influence of electron damage on the subcell performance in triple-junction solar cells using photoluminescence decays, Scientific Reports, 7: 1-8 2017.
doi: 10.1038/s41598-017-02141-0
Sayaria A, Ezzidini M, Azeza B, Rekaya S, Shalaan E, Yaghmoura SJ, Al-Ghamdic A, Sfaxid L, Mghaieth R, Maaref H. Improvement of performance of GaAs solar cells by inserting self-organized InAs/InGaAs quantum dot superlattices, Solar Energy Materials and Solar Cells, 113: .1-6, 2013.
doi: 10.1016/j.solmat.2013.01.033
Yu P, Wu J, Gao L, Liu H, Wang Z. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy, Solar Energy Materials and Solar Cells, 161: 377-381, 2017.
doi: 10.1016/j.solmat.2016.12.024
Golovynskyi S, Datsenko O I, Seravalli L, Trevisi G, Frigeri P, Babichuk IS, Golovynska I, Qu J. Interband photoconductivity of metamorphic InAs/InGaAs quantum dots in the 1.3-1.55 μm window, Nanoscale Research Letters, 13: 103, 2018.
doi: 10.1186/s11671-018-2524-3
Habchi M, Tounsi N, Bedoui M, Zaied I, Rebey A, El Jani B. Structural and optical properties of InxGa1−xAs strained layers grown on GaAs substrates by MOVPE, Physica E: Low-dimensional Systems and Nanostructures, 56: 74-78, 2014.
doi: 10.1016/j.physe.2013.08.017
Essig S, Allebé C, Remo T, Geisz JF, Steiner MA, Horowitz K, Barraud L, Ward JS, Schnabel M, Descoeudres A, Young DL, Woodhouse M, Despeisse M, Ballif C, Tamboli A. Raising the one-sun conversion effciency of III-V/Si solar cells to 32.8 % for two junctions and 35.9 % for three junctions, Nature Energy, 2: 1-9, 2017.
doi: 10.1038/nenergy.2017.144
Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz SW. n-Type Si solar cells with passivating electron contact: identifying sources forefficiency limitations by wafer thickness and resistivity variation, Solar Energy Materials and Solar Cells, 173: 96-105, 2017.
doi: 10.1016/j.solmat.2017.05.042
Green MA, Hishikawa Y, Dunlop E, Levi DH, Ebinger JH, Yoshita M, Ho-Baillie A. Solar cell efficiency tables (version 53), Progress in Photovoltaics: Research and Applications, 27: 3-13, 2018.
doi: 10.1002/pip.3102
Lassise MB, Wang P, Tracy BD, Chen G, Smith DJ, Zhang YH. Growth of II-VI/III-V heterovalent quantum structures, Journal of Vacuum Science & Technology B, 36: 02D110 1-5, 2018.
doi: 10.1116/1.5017972
Bakali E, Selamet Y, Tarhan E. Effect of Annealing on the Density of Defects in Epitaxial CdTe (211)/GaAs, Journal of Electronic Materials, 47(8): 4780-4792, 2018
doi: 10.1007/s11664-018-6352-0
Zhang Z, Shen Y, Xu Y, Huang J, Cao M, Gu F, Wang L. Preparation and surface defect regulation of CdZnTe films based on GaN substrates, Vacuum, 152: 145-149, 2018.
doi: 10.1016/j.vacuum.2018.03.017
Kawakita S, Imaizumi M, Makita K, Nishinaga J, Sugaya T, Shibata H, Sato, SI, Ohshima, T. High efficiency and radiation resistant InGaP/GaAs//CIGS stacked solar cells for space applications, Conference Record of the IEEE Photovoltaic Specialists Conference, 43: 2574-2577, 2017.
doi: 10.1109/PVSC.2017.8366599
Brajesh S, Yadav P, Mohanta P, Srinivasa R, Major S. Electrical and optical properties of transparent conducting InxGa1−xN alloy films deposited by reactive co-sputtering of GaAs and indium, Thin Solid Films, 555: 179-184, 2014.
doi: 10.1016/j.tsf.2013.11.117
Galiana B, Silvestre S, Algora C, Rey-Stolle I. Effect of annealing atmosphere in the properties of GaAs layers deposited by sputtering techniques on Si substrates, Journal of Materials Science-Materials in Electronics, 25: 134-139, 2014.
doi: 10.1007/s10854-013-1562-y
Chen R, Deng S, Liu Y, Liu Y, Li B, Wong M, Kwok HS. Investigation of top gate GaN thin-film transistor fabricated by DC magnetron sputtering, Journal of Vacuum Science & Technology B, 36: 032203 1-5, 2018.
doi: 10.1116/1.5021705
Howlader M, Zhang F, Deen M. Formation of gallium arsenide nanostructures in Pyrex glass, Nanotechnology, 24: 315301, 2013.
doi: 10.1088/0957-4484/24/31/315301
Bernal-Correa R, Gallardo-Hernández S, Cardona-Bedoya J, Pulzara-Mora A. Structural and optical characterization of GaAs and InGaAs thin films deposited by RF magnetron sputtering, Optik, 145: 608-616, 2017
doi: 10.1016/j.ijleo.2017.08.042
Erlacher A, Ambrico M, Capozzi V, Augelli V, Jaeger H, Ullrich B. X-ray absorption and photocurrent properties of thin-film GaAs on glass formed by pulsed-laser deposition, Semiconductor Science and Technology, 19: 1322-1324, 2004.
doi: 10.1088/0268-1242/19/11/019
Venegas M, Bernal R, López M, Pulzara A. Microstructure AFM study and raman spectra of In-GaAs bilayers prepared by R.F. magnetron sputtering on Si(100) substrates, Journal of Physics: Conference Series, 480: pp. 012017. 2014.
doi: 10.1088/1742-6596/480/1/012017
Aslan M, Yalcın B, Üstündag M. Structural and electronic properties of Ga1−xInxAs1−yNy quaternary semiconductor alloy on GaAs substrate, Journal of Alloys and Compounds, 519: 55-59, 2012.
doi: 10.1016/j.jallcom.2011.12.020
Othman M, Kasap E. Korozlu N. Ab-initio investigation of structural, electronic and optical properties of InxGa1−xAs, GaAs1−yPy ternary and InxGa1−xAs1−yPy quaternary semiconductor alloys, Journal of Alloys and Compounds, 496: 226-233, 2010.
doi: 10.1016/j.jallcom.2009.12.109
Zhao J, Shen W, Chang B, Zhang Y, Zhang J, Qin C. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD, Optics Communications, 328: 129- 134, 2014.
doi: 10.1016/j.optcom.2014.04.071
Kim Y, Kim K, Wan T, Mawst L, Kuech T, Kim C, Park W, Lee J. InGaAsNSb/Ge double-junction solar cells grown by metalorganic chemical vapor deposition, Solar Energy, 102: 126- 130, 2014.
doi: 10.1016/j.solener.2014.01.019
Fujikura H, Muranaka T, Hasegawa H. Formation of deviceoriented InGaAs coupled quantum structures by selective MBE growth on patterned InP substrates, Physica E: Low-dimensional Systems and Nanostructures, 7: 864-869, 2000.
doi: 10.1016/S1386-9477(00)00078-3
Ji L, Lu S, Wu Y, Dai P, Bian L, Arimochi L, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S, Yang H. Carrier recombination dynamics of MBE grown InGaAsP layers with 1 eV bandgap for quadruple-junction solar cells, Solar Energy Materials and Solar Cells, 127: 1-5. 2014.
doi: 10.1016/j.solmat.2014.03.051
Yanping Y, Chunling L, Zhongliang Q, Mei L, Xin G, Baoxue B. Optical and Electrical Properties of a-InGaAs:H Films Prepared by Double-Target Magnetron Co-sputtering, IEEE International Nanoelectronics Conference, 2: 411-414, 2008.
doi: 10.1109/INEC.2008.4585516
Bernal-Correa R. Gallardo-Hernández S, Cardona-Bedoya J, Pulzara-Mora A, Structural and optical characterization of GaAs and InGaAs thin films deposited by RF magnetron sputtering, Optik, 145: 608-616, 2017.
doi: 10.1016/j.ijleo.2017.08.042
Van Der Heider P, Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices, Wiley New Jersey, Estados Unidos. 2014.
doi: 10.1002/9781118916780
Dhaul A, Sharma SK, Sharma RK, Kapoor AK. Characterisation of Semiconductor Materials/Device Structures using SIMS, Defence Science Journal, 59: 342-350, 2009.
doi: 10.14429/dsj.59.1532
Groenen J, Carles R, Landa G, Guerret C, Fontaine C, Gendry M. Optical-phonon behavior in Ga1-xInxAs: The role of microscopic strains and ionic plasmon coupling, Phyisical Review B, 58: 452-462, 1998.
doi: 10.1103/PhysRevB.58.10452
Sim E, Han M, Beckers J, leeuw S. Local structure invariant potential for InxGa1-xAs semiconductor alloys, Bulletin of Korean Chemical Society, 30: 857-862, 2009.
doi: 10.5012/bkcs.2009.30.4.857
Islam MR, Verma P, Yamada M, Kodama S, Hanauer Y, Kinoshita K. The influence of residual strain on Raman scattering in InxGa1-xAs single Crystals, Materials Science and Engineering, 91: 66-69, 2002.
doi: 10.1016/S0921-5107(01)00972-2
Feng ZC, Allerman A, Barnes PA, Perkowitz S. Raman scattering of InGaAs/InP grown by uniform radial flow epitaxy, Applied Physics Letters, 60: 1848, 1992.
doi: 10.1063/1.107187
Kawai T, Yonezu H, Ogasawara Y, Saito D, Pak K. Segregation and interdiffusion of in atoms in GaAs/InAs/GaAs heterostructures, Journal Applied Physics, 74: 1770-1774, 1993.
doi: 10.1063/1.354806
Roura P, Vila A, Bosch J, López M, Cornet A, Morante JR, Westwood DI. Atomic diffusion induced by stress relaxation in InGaAs/GaAs epitaxial layers, Journal Applied Physics, 82: 1147- 1152, 1997.
doi: 10.1063/1.365881
Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.