Published Nov 18, 2019


Google Scholar
Search GoogleScholar

Santiago Torres-Jaramillo

Camilo Pulzara-Mora

Roberto Bernal-Correa

Miguel Venegas de la Cerda

Salvador Gallardo-Hernández

Máximo López-López

Álvaro Pulzara-Mora



Currently, the obtention of nano-structures based on III-V materials is expensive. This calls for novel and inexpensive nanostructure manufacturing approaches. In this work we report on the manufacture of a nanostructures consisting of alternating layers of In and GaAs on a silicon substrate by magnetron sputtering. Furthermore, we characterized the produced nanostructures using secondary ion mass spectroscopy (SIMS), X-ray diffraction analysis, and Raman spectroscopy. SIMS revealed variation in the concentration of In atoms across In/GaAs/In interphases, and X-ray diffraction revealed planes corresponding to phases associated with GaAs and InAs due to In interfacial diffusion across GaAs layers. Finally, in order to study the composition and crystalquality of the manufactured nanostaructures, Raman spectra were taken using laser excitation lines of 452 nm, 532 nm, and 562 nm at different points across the nanostructures.This allowed to determine the transverse and longitudinal optical modes of GaAs and InAs,characteristic of a two-mode behavior. An acoustic longitudinal vibrational mode LA(Γ) of GaAs and an acoustic longitudinal mode activated by disorder (DALA) were observed. These resulted from the substitution of Ga atoms for In atoms in high concentrations due to the generation of Ga(VGa) and/or Arsenic(VAs) vacancies.This set of analyses show that magnetron sputtering can be aviable and relatively low-cost technique to obtain this type of semiconductors.


III-V, semiconductors, Raman spectroscopy, SIMS, X ray

[1] Tatavartia SR, Bittner ZS, Wibowo A, Slocum MA, Nelson G, Kum H, Ahrenkiel SP, Hubbard SM. Epitaxial Lift-off (ELO) of InGaP/GaAs/InGaAs solar cells with quantum dots in GaAs middle sub-cell, Solar Energy Materials and Solar Cells, 185: 153-157, 2018.
doi: 10.1016/j.solmat.2018.05.016

[2] Bruzzi M, Baldi A, Ennio, Carnevale A, Catelani M, Ciani L. Conversion efficiency of Si-InGaAs and GaAsP-Si-Ge lateral beam splitting photovoltaic devices, Measurement, 119: 102-107, 2018.
doi: 10.1016/j.measurement.2018.01.035

[3] Bimberg D. Semiconductor nanostructures for flying q-bits and green photonics, Nanophotonics, 7: 1245-1257, 2018.
doi: 10.1515/nanoph-2018-0021

[4] Ali LM, Abed FA. Investigation the absorption efficiency of GaAs/InGaAs nanowire solar Cells, Optical Materials, 72: 650- 653, 2017.
doi: 10.1016/j.optmat.2017.07.014

[5] Tex DM, Nakamura T, Imaizumi M, Ohshima T, Kanemitsu Y. Direct evaluation of influence of electron damage on the subcell performance in triple-junction solar cells using photoluminescence decays, Scientific Reports, 7: 1-8 2017.
doi: 10.1038/s41598-017-02141-0

[6] Sayaria A, Ezzidini M, Azeza B, Rekaya S, Shalaan E, Yaghmoura SJ, Al-Ghamdic A, Sfaxid L, Mghaieth R, Maaref H. Improvement of performance of GaAs solar cells by inserting self-organized InAs/InGaAs quantum dot superlattices, Solar Energy Materials and Solar Cells, 113: .1-6, 2013.
doi: 10.1016/j.solmat.2013.01.033

[7] Yu P, Wu J, Gao L, Liu H, Wang Z. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy, Solar Energy Materials and Solar Cells, 161: 377-381, 2017.
doi: 10.1016/j.solmat.2016.12.024

[8] Golovynskyi S, Datsenko O I, Seravalli L, Trevisi G, Frigeri P, Babichuk IS, Golovynska I, Qu J. Interband photoconductivity of metamorphic InAs/InGaAs quantum dots in the 1.3-1.55 μm window, Nanoscale Research Letters, 13: 103, 2018.
doi: 10.1186/s11671-018-2524-3

[9] Habchi M, Tounsi N, Bedoui M, Zaied I, Rebey A, El Jani B. Structural and optical properties of InxGa1−xAs strained layers grown on GaAs substrates by MOVPE, Physica E: Low-dimensional Systems and Nanostructures, 56: 74-78, 2014.
doi: 10.1016/j.physe.2013.08.017

[10] Essig S, Allebé C, Remo T, Geisz JF, Steiner MA, Horowitz K, Barraud L, Ward JS, Schnabel M, Descoeudres A, Young DL, Woodhouse M, Despeisse M, Ballif C, Tamboli A. Raising the one-sun conversion effciency of III-V/Si solar cells to 32.8 % for two junctions and 35.9 % for three junctions, Nature Energy, 2: 1-9, 2017.
doi: 10.1038/nenergy.2017.144

[11] Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz SW. n-Type Si solar cells with passivating electron contact: identifying sources forefficiency limitations by wafer thickness and resistivity variation, Solar Energy Materials and Solar Cells, 173: 96-105, 2017.
doi: 10.1016/j.solmat.2017.05.042

[12] Green MA, Hishikawa Y, Dunlop E, Levi DH, Ebinger JH, Yoshita M, Ho-Baillie A. Solar cell efficiency tables (version 53), Progress in Photovoltaics: Research and Applications, 27: 3-13, 2018.
doi: 10.1002/pip.3102

[13] Lassise MB, Wang P, Tracy BD, Chen G, Smith DJ, Zhang YH. Growth of II-VI/III-V heterovalent quantum structures, Journal of Vacuum Science & Technology B, 36: 02D110 1-5, 2018.
doi: 10.1116/1.5017972

[14] Bakali E, Selamet Y, Tarhan E. Effect of Annealing on the Density of Defects in Epitaxial CdTe (211)/GaAs, Journal of Electronic Materials, 47(8): 4780-4792, 2018
doi: 10.1007/s11664-018-6352-0

[15] Zhang Z, Shen Y, Xu Y, Huang J, Cao M, Gu F, Wang L. Preparation and surface defect regulation of CdZnTe films based on GaN substrates, Vacuum, 152: 145-149, 2018.
doi: 10.1016/j.vacuum.2018.03.017

[16] Kawakita S, Imaizumi M, Makita K, Nishinaga J, Sugaya T, Shibata H, Sato, SI, Ohshima, T. High efficiency and radiation resistant InGaP/GaAs//CIGS stacked solar cells for space applications, Conference Record of the IEEE Photovoltaic Specialists Conference, 43: 2574-2577, 2017.
doi: 10.1109/PVSC.2017.8366599

[17] Brajesh S, Yadav P, Mohanta P, Srinivasa R, Major S. Electrical and optical properties of transparent conducting InxGa1−xN alloy films deposited by reactive co-sputtering of GaAs and indium, Thin Solid Films, 555: 179-184, 2014.
doi: 10.1016/j.tsf.2013.11.117

[18] Galiana B, Silvestre S, Algora C, Rey-Stolle I. Effect of annealing atmosphere in the properties of GaAs layers deposited by sputtering techniques on Si substrates, Journal of Materials Science-Materials in Electronics, 25: 134-139, 2014.
doi: 10.1007/s10854-013-1562-y

[19] Chen R, Deng S, Liu Y, Liu Y, Li B, Wong M, Kwok HS. Investigation of top gate GaN thin-film transistor fabricated by DC magnetron sputtering, Journal of Vacuum Science & Technology B, 36: 032203 1-5, 2018.
doi: 10.1116/1.5021705

[20] Howlader M, Zhang F, Deen M. Formation of gallium arsenide nanostructures in Pyrex glass, Nanotechnology, 24: 315301, 2013.
doi: 10.1088/0957-4484/24/31/315301

[21] Bernal-Correa R, Gallardo-Hernández S, Cardona-Bedoya J, Pulzara-Mora A. Structural and optical characterization of GaAs and InGaAs thin films deposited by RF magnetron sputtering, Optik, 145: 608-616, 2017
doi: 10.1016/j.ijleo.2017.08.042

[22] Erlacher A, Ambrico M, Capozzi V, Augelli V, Jaeger H, Ullrich B. X-ray absorption and photocurrent properties of thin-film GaAs on glass formed by pulsed-laser deposition, Semiconductor Science and Technology, 19: 1322-1324, 2004.
doi: 10.1088/0268-1242/19/11/019

[23] Venegas M, Bernal R, López M, Pulzara A. Microstructure AFM study and raman spectra of In-GaAs bilayers prepared by R.F. magnetron sputtering on Si(100) substrates, Journal of Physics: Conference Series, 480: pp. 012017. 2014.
doi: 10.1088/1742-6596/480/1/012017

[24] Aslan M, Yalcın B, Üstündag M. Structural and electronic properties of Ga1−xInxAs1−yNy quaternary semiconductor alloy on GaAs substrate, Journal of Alloys and Compounds, 519: 55-59, 2012.
doi: 10.1016/j.jallcom.2011.12.020

[25] Othman M, Kasap E. Korozlu N. Ab-initio investigation of structural, electronic and optical properties of InxGa1−xAs, GaAs1−yPy ternary and InxGa1−xAs1−yPy quaternary semiconductor alloys, Journal of Alloys and Compounds, 496: 226-233, 2010.
doi: 10.1016/j.jallcom.2009.12.109

[26] Zhao J, Shen W, Chang B, Zhang Y, Zhang J, Qin C. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD, Optics Communications, 328: 129- 134, 2014.
doi: 10.1016/j.optcom.2014.04.071

[27] Kim Y, Kim K, Wan T, Mawst L, Kuech T, Kim C, Park W, Lee J. InGaAsNSb/Ge double-junction solar cells grown by metalorganic chemical vapor deposition, Solar Energy, 102: 126- 130, 2014.
doi: 10.1016/j.solener.2014.01.019

[28] Fujikura H, Muranaka T, Hasegawa H. Formation of deviceoriented InGaAs coupled quantum structures by selective MBE growth on patterned InP substrates, Physica E: Low-dimensional Systems and Nanostructures, 7: 864-869, 2000.
doi: 10.1016/S1386-9477(00)00078-3

[29] Ji L, Lu S, Wu Y, Dai P, Bian L, Arimochi L, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S, Yang H. Carrier recombination dynamics of MBE grown InGaAsP layers with 1 eV bandgap for quadruple-junction solar cells, Solar Energy Materials and Solar Cells, 127: 1-5. 2014.
doi: 10.1016/j.solmat.2014.03.051

[30] Yanping Y, Chunling L, Zhongliang Q, Mei L, Xin G, Baoxue B. Optical and Electrical Properties of a-InGaAs:H Films Prepared by Double-Target Magnetron Co-sputtering, IEEE International Nanoelectronics Conference, 2: 411-414, 2008.
doi: 10.1109/INEC.2008.4585516

[31] Bernal-Correa R. Gallardo-Hernández S, Cardona-Bedoya J, Pulzara-Mora A, Structural and optical characterization of GaAs and InGaAs thin films deposited by RF magnetron sputtering, Optik, 145: 608-616, 2017.
doi: 10.1016/j.ijleo.2017.08.042

[32] Van Der Heider P, Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices, Wiley New Jersey, Estados Unidos. 2014.
doi: 10.1002/9781118916780

[33] Dhaul A, Sharma SK, Sharma RK, Kapoor AK. Characterisation of Semiconductor Materials/Device Structures using SIMS, Defence Science Journal, 59: 342-350, 2009.
doi: 10.14429/dsj.59.1532

[34] Groenen J, Carles R, Landa G, Guerret C, Fontaine C, Gendry M. Optical-phonon behavior in Ga1-xInxAs: The role of microscopic strains and ionic plasmon coupling, Phyisical Review B, 58: 452-462, 1998.
doi: 10.1103/PhysRevB.58.10452
[35] Sim E, Han M, Beckers J, leeuw S. Local structure invariant potential for InxGa1-xAs semiconductor alloys, Bulletin of Korean Chemical Society, 30: 857-862, 2009.
doi: 10.5012/bkcs.2009.30.4.857

[36] Islam MR, Verma P, Yamada M, Kodama S, Hanauer Y, Kinoshita K. The influence of residual strain on Raman scattering in InxGa1-xAs single Crystals, Materials Science and Engineering, 91: 66-69, 2002.
doi: 10.1016/S0921-5107(01)00972-2

[37] Feng ZC, Allerman A, Barnes PA, Perkowitz S. Raman scattering of InGaAs/InP grown by uniform radial flow epitaxy, Applied Physics Letters, 60: 1848, 1992.
doi: 10.1063/1.107187

[38] Kawai T, Yonezu H, Ogasawara Y, Saito D, Pak K. Segregation and interdiffusion of in atoms in GaAs/InAs/GaAs heterostructures, Journal Applied Physics, 74: 1770-1774, 1993.
doi: 10.1063/1.354806

[39] Roura P, Vila A, Bosch J, López M, Cornet A, Morante JR, Westwood DI. Atomic diffusion induced by stress relaxation in InGaAs/GaAs epitaxial layers, Journal Applied Physics, 82: 1147- 1152, 1997.
doi: 10.1063/1.365881
How to Cite
Torres-Jaramillo, S., Pulzara-Mora, C., Bernal-Correa, R., Venegas de la Cerda, M., Gallardo-Hernández, S., López-López, M., & Pulzara-Mora, Álvaro. (2019). Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering. Universitas Scientiarum, 24(3), 523–542.
Física de Materiales / Physics of Materials / Física de Materiais