Published Nov 20, 2019



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Daniel Suescun-Díaz http://orcid.org/0000-0003-2422-0684

Diego A Rasero-Causil https://orcid.org/0000-0002-6583-0422

Jaime H Lozano-Parada https://orcid.org/0000-0003-4001-2455

##plugins.themes.bootstrap3.article.details##

Abstract

This paper presents a numerical solution to the equations of point kinetics for nuclear power reactors, a set of seven coupled differential equations that describe the temporal variation of neutron density and the concentration of delayed neutron precursors. Due to the nature of the system, we propose to numerically solve the point kinetics equations by implementing the Adams-Bashforth and Adams-Moulton methods, which are predictor-corrector schemes with their respective modifiers to increase precision. The proposed method was tested computationally for different forms of reactivity with up to six groups of delayed neutron precursors. This method was used in a recent publication to solve the inverse problem of finding the reactivity. In this work, it is shown that it can also be used for the calculation of nuclear power, that it is simple and easy to implement, and that it produces good results when compared with those in the literature for neutron population density and concentration of delayed neutron precursors.

Keywords

nuclear reactor power, nuclear density, point kinetics equations, numerical methods, Adams-Bashforth method, Adams-Moulton method

References
[1] Chao YA, Attard A. A resolution of the stiffness problem of reactor kinetics, Nuclear Science and Engineering, 90(1):40-46, 1985.
doi: 10.13182/NSE85-A17429

[2] Sánchez J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods, Nuclear Science and Engineering, 103: 94-99, 1989.
doi: 10.13182/NSE89-A23663

[3] Aboanber AE, Nahla AA. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximation via the analytical inversion method, Journal of Physics A: Mathematical and General, 35(45):9609-9627, 2002b.
doi: 10.1088/0305-4470/35/45/309

[4] Aboanber AE, Nahla AA. Generalization of the analytical inverse method for the solution of point kinetics equations, Journal of Physics A: Mathematical and General, 35(14): 3245-3263, 2002a.
doi: 10.1088/0305-4470/35/14/307

[5] Aboanber AE. Analytical solution of the point kinetics equations by exponential mode analysis, Progress in Nuclear Energy, 42(2): 179-197, 2003.
doi: 10.1016/s0140-6701(03)82201-4

[6] Kinard, M.; Allen, E. J.: Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics, Annals of Nuclear Energy, 31(9): 1039-1051, 2004.
doi: 10.1016/j.anucene.2003.12.008

[7] Quintero LB. CORE: a numerical algorithm to solve the point kinetics equations, Annals of Nuclear Energy, 35(11): 2136-2138, 2008.
doi: 10.1016/j.anucene.2008.07.002

[8] Li H, Chen W, Luo L, Zhu Q. A new integral method for solving the point reactor neutron kinetics equations, Annals of Nuclear Energy, 36(4): 427-432, 2009.
doi: 10.1016/j.anucene.2008.11.033

[9] Nahla, A. A.: Taylor series method for solving the nonlinear point kinetics equations, Nuclear Engineering and Design, 241(5): 1592-1595, 2011.
doi: 10.1016/j.nucengdes.2011.02.016

[10] Hamada, Y. M.: Generalized power series method with step size control for neutron kinetics equations, Nuclear Engineering and Design, 241(8): 3032-3041, 2011.
doi: 10.1016/j.nucengdes.2011.05.006

[11] Hamada YM. Confirmation of accuracy of generalized power series method for the solution of point kinetics equations with feedback, Annals of Nuclear Energy, 55: 184-193, 2013.
doi: 10.1016/j.anucene.2012.12.013

[12] Ganapol BD. A highly accurate algorithm for the solution of the point kinetics equations, Annals of Nuclear Energy, 62: 564- 571, 2013.
doi: 10.1016/j.anucene.2012.06.007

[13] Picca P, Furfaro R, Ganapol B. A highly accurate technique for the solution of the non-linear point kinetics equations, Annals of Nuclear Energy, 58: 43-53, 2013.
doi: 10.1016/j.anucene.2013.03.004

[14] Salah A. Hassan SA. Samia.: The Analytical Algorithm for the Differential Transform Method to Solution of the Reactor Point kinetics Equations, World Applied Sciences Journal, 27(3):367-370, 2013.
doi: 10.5829/idosi.wasj.2013.27.03.1601

[15] Kim HT, Park Y, Kazantzis N, Parlos A, Vista IV F, Chong KT. A numerical solution to the point kinetic equations using Taylor-Lie series combined with a scaling and squaring technique, Nuclear Engineering and Design, 272: 1-10, 2014.
doi: 10.1016/j.nucengdes.2013.12.066

[16] Patra A, Ray SS. A numerical approach based on Haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Annals of Nuclear Energy, 68: 112-117, 2014.
doi: 10.1016/j.anucene.2014.01.008

[17] Leite QB, Palma AP, Vilhena MT, Bodmann EJ. Analytical representation of the solution of the point reactor kinetics equations with adaptive time step, Progress in Nuclear Energy, 70: 112-118, 2014.
doi: 10.1016/j.pnucene.2013.07.008

[18] Hamada YM. Trigonometric Fourier-series solutions of the point reactor kinetics equations. Nuclear Engineering and Design, 281: 142-153, 2015.
doi: 10.1016/j.nucengdes.2014.11.017

[19] Razak MA, Devan K, Sathiyasheela T. The modified exponential time differencing (ETD) method for solving the reactor point kinetics equations, Annals of Nuclear Energy, 76: 193-199, 2015.
doi: 10.1016/j.anucene.2014.09.020

[20] Nahla AA. Numerical treatment for the point reactor kinetics equations using theta method, eigenvalues and eigenvectors, Progress in Nuclear Energy, 85: 756-763, 2015.
doi: 10.1016/j.pnucene.2015.09.008

[21] Suescún DD, Narváez PM, Lozano PH. Calculation of Nuclear Reactivity Using the Generalised Adams Bashforth-Moulton Predictor-Corrector Method, Kerntechnik, 81(1): 86-93, 2016.
doi: 10.3139/124.110591

[22] Yun C, Xingjie P, Qing L, Kan W. A numerical solution to the nonlinear point kinetics equations using Magnus expansion, Annals of Nuclear Energy, 89: 84-89, 2016.
doi: 10.1016/j.anucene.2015.11.021

[23] Duderstadt JJ, Hamilton LJ. Nuclear Reactor Analysis, second ed. John Wiley & Sons Inc., New York, 1976
How to Cite
Suescun-Díaz, D., Rasero-Causil, D. A., & Lozano-Parada, J. H. (2019). Neutron Density Calculation Using the Generalised Adams-Bashforth-Moulton Method. Universitas Scientiarum, 24(3), 543–563. https://doi.org/10.11144/Javeriana.SC24-3.ndcu
Section
Física / Physics / Física