Non-radial functions, nonlocal operators and Markov processes over p-adic numbers
PDF

Keywords

Markov processes
non-Archimedean analysis
nonlocal operators
p-adic numbers

How to Cite

Non-radial functions, nonlocal operators and Markov processes over p-adic numbers. (2019). Universitas Scientiarum, 24(2), 381-406. https://doi.org/10.11144/Javeriana.SC24-2.nrfn
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

The main goal of this article is to study a new class of nonlocal operators and the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated with them. The fundamental solutions of these equations are transition functions of Markov processes on an n-dimensional vector space over the p-adic numbers. We also study some properties of these Markov processes, including the first passage time problem.

PDF

Avetisov VA, Bikulov A Kh. Ultrametricity of fluctuation dynamic mobility of protein molecules, Proceedings of the Steklov Institute of Mathematics, 265: 75-81, 2009. (Russian), Trudy Matematicheskogo Instituta imeni V.A. Steklova, 265: 82-89, 2009.

doi: 10.1134/S0081543809020060

Avetisov VA, Bikulov AKh, Zubarev AP. First passage time distribution and the number of returns for ultrametric random walks, Journal of Physics A: Mathematical and Theoretical, 42(8): 085003, 2009.

doi: 10.1088/1751-8113/42/8/085003

Avetisov VA, Bikulov AKh, Osipov VA. p-adic models of ultrametric diffusion in conformational dynamics of macromolecules. (Russian), Trudy Matematicheskogo Instituta imeni V.A. Steklova, 245(2): 55-64, 2004

Avetisov VA, Bikulov AKh, Osipov VA. p-adic description of characteristic relaxation in complex systems, Journal of Physics A: Mathematical and General, 36 (15): 4239-4246, 2003.

doi: 10.1088/0305-4470/36/15/301

Avetisov VA, Bikulov AH, Kozyrev SV, Osipov VA. p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, Journal of Physics A: Mathematical and General, 35(2): 177-189, 2002.

doi: 10.1088/0305-4470/35/2/301

Avetisov VA, Bikulov AKh, Kozyrev SV. Description of logarithmic relaxation by a model of a hierarchical random walk. (Russian), Doklady Akademii Nauk, 368(2): 164-167, 1999.

Dragovich B, Khrennikov AYu, Kozyrev SV, Volovich IV. On p-adic mathematical physics, p-Adic Numbers Ultrametric Analysis and Applications, 1(1): 1-17, 2009.

doi: 10.1134/S2070046609010014

Khrennikov AYu, Kozyrev SV. p-adic pseudodifferential operators and analytic continuation of replica matrices, Theoretical and Mathematical Physics, 144(2): 1166-1170, 2005.

doi: 10.4213/tmf1858

Mezard M, Parisi G, Virasoro MA. Spin glass theory and beyond, In World Scientific Lecture Notes in Physics, 1987.

doi: 10.1142/0271

Varadarajan VS. Path integrals for a class of p-adic Schrodinger equations, Letters in Mathematical Physics, 39 (2): 97-106, 1997.

doi: 10.1023/A:1007364631796

Vladimirov VS, Volovich IV, Zelenov EI. p-analysis and mathematical physics, World Scientific, 1994.

Zúñiga-Galindo WA. Parabolic equations and Markov processes over p-adic fields, Potential Analysis, 28 (2): 185-200, 2008.

doi: 10.1007/s11118-007-9072-2

Galeano-Peñaloza J, Zúñiga-GalindoWA. Pseudo-differential operators with semi-quasielliptic symbols over p-adic fields, Journal of Mathematical Analysis and Applications, 386 (1): 32-49, 2012.

doi: 10.1016/j.jmaa.2011.07.040

KarwowskiW. Diffusion processes with ultrametric jumps, Reports on Mathematical Physics, 60 (2): 221-235, 2007.

doi: 10.1016/S0034-4877(07)00025-0

Rammal R, Toulouse G, Virasoro MA. Ultrametricity for physicists, Reviews of Modern Physics, 58 (3): 765-788, 1986.

doi: 10.1103/RevModPhys.58.765

Kochubei AN. Pseudo-differential equations and stochastics over non-Archimedean fields, Monographs and Textbooks in Pure and Applied Mathematics, 244, Marcel Dekker, Inc., New York, 2001.

Chacón-Cortés LF, Zúñiga-Galindo WA. Non-local operators, non-Archimedean parabolic-type equations with variable coefficients and Markov processes, Publications of the Research Institute for Mathematical Sciences PRIMS, 51 (2): 289-317, 2015.

doi: 10.4171/PRIMS/156

Chacón-Cortés LF, Zúñiga-GalindoWA. Nonlocal operators, parabolictype equations, and ultrametric random walks, Journal of Mathematical Physics, 54 (11): 113503, 2013.

doi: 10.1063/1.4828857

Casas-Sánchez OF, Galeano-Peñaloza J, Rodríguez-Vega JJ. Parabolictype pseudodifferential equations with elliptic symbols in dimension 3 over p-adics, p-Adic Numbers Ultrametric Analysis and Applications, 7(1): 1-16, 2015.

doi: 10.1134/S207004661501001X

Chacón-Cortés LF. The problem of the first passage time for some elliptic pseudodiffe-rential operators over the p-adics, Revista Colombiana de Matemáticas, 48 (2): 191-209, 2014.

doi: 10.15446/recolma.v48n2.54124

Casas-Sánchez OF, Galeano-Peñaloza J, Rodríguez-Vega JJ. The problem of the first return attached to a pseudodifferential operator in dimension 3, Revista Integración. Temas Matemáticos, 33(2): 107-119, 2015.

doi: 10.18273/revint.v33n2-2015002

Casas-Sánchez OF, Zúñiga-Galindo WA. p-adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes, p-Adic Numbers Ultrametric Analysis and Applications, 6 (1): 1-20, 2014.

doi: 10.1134/S2070046614010014

Albeverio S, Khrennikov AYu, Shelkovich VM. Theory of p-adic distributions: linear and nonlinear models. Cambridge University Press, 2010.

Taibleson MH. Fourier analysis on local fields, Princeton University Press, 1975.

Zúñiga-Galindo WA. Pseudodifferential Equations Over Non-Archimedean Spaces, Lectures Notes in Mathematics vol. 2174, Springer, 2016.

Berg C and Forst G. Potential theory on locally compact abelian groups, Springer-Verlag, New York, 1975.

Engel K-J, Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, 2000.

Cazenave Thierry, Haraux Alain: An introduction to semilinear evolution equations. Oxford University Press, 1998.

Torresblanca-Badillo A, Zúñiga-Galindo WA. Ultrametric Diffusion, Exponential Landscapes, and the First Passage Time Problem, Acta Applicandae Mathematicae, 157(1): 93-116, 2018.

doi: 10.1007/s10440-018-0165-2

Dynkin EB. Markov processes. Vol. I. Springer-Verlag, 1965

Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.