Published Oct 2, 2018


Google Scholar
Search GoogleScholar

Sandra Patricia Salas-Cárdenas

Nury Natalia Olaya-Galán

Karem Fernández

Fernando Velez

Carlos Arturo Guerrero

Maria Fernanda Guitiérrez



Probiotic bacteria are microorganisms beneficial to human health, useful to improving biological conditions. Thanks to probiotic bacteria the symptoms of viral infections can be alleviated. Different mechanisms whereby probiotic bacteria exert they antiviral effect have been proposed. The aim of this study was to determine whether probiotic bacteria extracts bind to receptors of host cells susceptible of rotavirus (RV) infection. To accomplish this objective, four probiotic bacterial strains of Lactobacillus spp. and Bifidobacterium spp. were tested. Probiotic extracts were obtained after bacterial growth, cell lysis and centrifugation. Obtained probiotic extracts were used in assays to interfere with adhesion and penetration of a RV strain in the mammal cell line MA104. Furthermore, the interaction between probiotic extracts and MA104 cell receptors was evaluated by co-immunoprecipitation assays using anti-ß3-integrins and anti-Hsc70 antibodies. All four probiotic, protein-rich, extracts reduced RV infections in MA104 cells, suggesting a successful antiviral activity mediated by these probiotic extracts. All probiotic extracts significantly exerted thir antiviral activity by interfering with RV adhesion on MA104 cell receptors, with proteins in probiotic extracts competitively interacting with cell surface receptors necessary to RV infection. Co-immunoprecipitation assay results showed that proteins in probiotic extracts were able to bind to ß3-integrinsand Hsc70, which are two cellular receptors required to viral infection. The most significant contribution of this study is an insight into the mechanisms of probiotic antiviral activity, thus expanding current probiotics fundamental knowledge.


Probiotics, Antiviral effect, Rotavirus, Hsc70, integrin ß3

[1] Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Review article: bifidobacteria as probiotic agents -- physiological effects and clinical benefits, Alimentary Pharmacology and Therapeutics, 22: 495-512, 2005.
doi: 10.1111/j.1365-2036.2005.02615.x

[2] Ruiz L, Couté Y, Sánchez B, de los Reyes-Gavilán CG, Sanchez JC, Margolles A. The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment, Microbiology Society, 155: 957-67, 2009.
doi: 10.1099/mic.0.024273-0

[3] Sánchez B, Urdaci MC, Margolles A. Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology, 156: 3232- 42, 2010.
doi: 10.1099/mic.0.044057-0

[4] Walker WA. Mechanisms of action of probiotics, Clinical Infectious Diseases, 46(2): S87-91, 2008.
doi: 10.1086/523335

[5] Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination, Gastroenterology, 136: 1939-51, 2009.
doi: 10.1053/j.gastro.2009.02.076

[6] Marshall J, Botes J, Gorrie G, Boardman C, Gregory J, Griffith J, Hogg G, Dimitriadis A, Catton M, Bishop R. Rotavirus detection and characterisation in outbreaks of gastroenteritis in aged-care facilities, Journal of Clinical Virology, 28: 331-340, 2003.
doi: 10.1016/S1386-6532(03)00081-7

[7] Colbère-Garapin F, Martin-Latil S, Blondel B, Mousson L, Pelletier I, Autret A, François A, Niborski V, Grompone G, Catonnet G, van de Moer A. Prevention and treatment of enteric viral infections: possible benefits of probiotic bacteria, Microbes and Infection, 9(14): 1623-31, 2007.
doi: 10.1016/j.micinf.2007.09.016

[8] Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection, International Journal of Food Microbiology, 141(31): 91-97, 2010.
doi: 10.1016/j.ijfoodmicro.2009.12.024

[9] Parez N. Rotavirus gastroenteritis: why to back up the development of new vaccines? Comp Immunol Microbiol Infect Dis, 31: 253-69, 2008.
doi: 10.1016/j.cimid.2007.07.005

[10] Acosta L O, Calderón MN, Moreno LP, Guerrero CA. Un modelo del mecanismo de entrada de los rotavirus a la célula hospedera, Revista de la Facultad de Medicina de la Universidad Nacional de Colombia, 57: 114-148, 2009.

[11] Calderón MN, Guerrero CA, Domínguez Y, Garzon E, Barreto S, Acosta O. Interaction of rotavirus with protein disulfide isomerase in vitro and cell system, Biomédica, 31(1): 70-81, 2011.
doi: 10.7705/biomedica.v31i1.337

[12] Dormitzer PR, Nason EB, Prasad BV V, Harrison SC. Structural rearrangements in the membrane penetration protein of a nonenveloped virus, Nature, 430: 1053-1058, 2004.
doi: 10.1038/nature02836

[13] Hewish MJ, Takada Y, Coulson BS. Integrins alpha 2beta 1 and alpha 4beta 1 Can Mediate SA11 Rotavirus Attachment and Entry into Cells, Journal of Virology, 74: 228-236, 2000.
doi: 10.1128/JVI.74.1.228-236.2000

[14] Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BV. Rotavirus non-structural proteins: structure and function, Current Opinion in Virology, 2(4): 380-388, 2012.
doi: 10.1016/j.coviro.2012.06.003

[15] Méndez E, Arias CF, López S. Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture, Journal of Virology, 67: 5253-5259, 1993.

[16] Guerrero CA, Méndez E, Zárate S, Isa P, López S, Arias CF. Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proceedings of the National Academy of Science of the United States of America, 97(26): 14644-14649, 2000.
doi: 10.1073/pnas.250299897

[17] Olaya Galán NN, Ulloa Rubiano JC, Velez Reyes FA, Fernandez Duarte KP, Salas Cárdenas SP, Gutierrez Fernandez MF. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP4 protein production, Journal of Applied Microbiology, 120: 1041-51, 2016.
doi: 10.1111/jam.13069

[18] Fernandez-Duarte KP, Olaya-Galán NN, Salas-Cárdenas P, Lopez-Rozo J, Gutierrez-Fernandez MF. Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26- DSL): Probiotics Able to Block the In Vitro Adherence of Rotavirus in MA104 Cells, Probiotics and Antimicrobial Proteins, 10: 56-63, 2018.
doi: 10.1007/s12602-017-9277-7

[19] Ivec M, Botić T, Koren S, Jakobsen M, Weingartl H, Cencic A. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus, Antiviral Research, 75: 266-274, 2007.
doi: 10.1016/j.antiviral.2007.03.013

[20] Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiology Letters, 309: 184-192, 2010.
doi: 10.1111/j.1574-6968.2010.02038.x

[21] Sánchez B, Bressollier P, Urdaci MC. Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunology & Medical Microbiology, 54: 1-17, 2008.
doi: 10.1111/j.1574-695X.2008.00454.x

[22] Filip C, Fletcher G, Wulff JL, Earhart CF. Solubilization of the Cytoplasmic Membrane of Escherichia coli by the Ionic Detergent Sodium-Lauryl Sarcosinate, Journal of Bacteriology, 115(3): 717-722, 1973.

[23] Privalov PL, Tiktopulo EI, Venyaminov SY, Griko YV, Makhatadze GI, Khechinashvili NN. Heat capacity and conformation of proteins in the denatured state, Journal of Molecular Biology, 205(4): 737-750, 1989.
doi: 10.1016/0022-2836(89)90318-5

[24] Zhang Q-B, Na X-Z, Yin Z-N. Characterization of thermal denaturation process of proteinase K by spectrometry, Guang Pu Xue Yu Guang Pu Fen Xi, 33(7): 1749-17553, 2013.

[25] Guerrero CA, Bouyssounade D, Zarate S, Isa P, López T, Espinosa R, Romero P, Méndez E, López S, Arias CF. Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry, Journal of Virology, 76: 4096-4102, 2002.
doi: 10.1128/JVI.76.8.4096-4102.2002

[26] Baker M, Prasad BVV. Rotavirus cell entry, Current Topics in Microbiology and Immunology, 343: 121-148, 2010.
doi: 10.1007/82_2010_34

[27] Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production, International Journal of Food Microbiology, 125(3): 286-292, 2008.
doi: 10.1016/j.ijfoodmicro.2008.04.012

[28] Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts, Microbiology, 156: 1609-1618, 2010.
doi: 10.1099/mic.0.038307-0

[29] Guarino A, Lo Vecchio A, Canani RB. Probiotics as prevention and treatment for diarrhea. Current Opinion in Gastroenterology, 25: 18-23, 2009.
doi: 10.1097/MOG.0b013e32831b4455

[30] Vandenplas Y, De Greef E, Devreker T, Veereman-Wauters G, Hauser B. Probiotics and prebiotics in infants and children, Current Infectious Disease Reports, 15: 251-262, 2013.
doi: 10.1007/s11908-013-0334-4

[31] Gonzalez-Ochoa G, Flores-Mendoza LK, Icedo-Garcia R, Gomez-Flores R, Tamez-Guerra P. Modulation ofrotavirus severe gastroenteritis by the combination of probiotics and prebiotics, Archives of Microbiology, 199(7): 953-961, 2017.
doi: 10.1007/s00203-017-1400-3

[32] Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth, Gastroenterology, 132: 562-575, 2007.
doi: 10.1053/j.gastro.2006.11.022

[33] Laiño J, Villena J, Kanmani P, Kitazawa H. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells, Microorganisms, 4: 27, 2016.
doi: 10.3390/microorganisms4030027

[34] Kanmani P, Albarracin L, Kobayashi H, Iida H, Komatsu R, Humayun Kober AKM, Ikeda-Ohtsubo W, Suda Y, Aso H, Makino S, Kano H, Saito T, Villena J, Kitazawa H. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells, Molecular Immunology, 93: 253-265, 2018.
doi: 10.1016/J.MOLIMM.2017.07.009

[35] Antikainen J, Anton L, Sillanpää J, Korhonen TK. Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly, Molecular Microbiology, 46: 381-94, 2002.
doi: 10.1046/j.1365-2958.2002.03180.x
How to Cite
Salas-Cárdenas, S. P., Olaya-Galán, N. N., Fernández, K., Velez, F., Guerrero, C. A., & Guitiérrez, M. F. (2018). Decreased rotavirus infection of MA104 cells via probiotic extract binding to Hsc70 and ß3 integrin receptors. Universitas Scientiarum, 23(2), 219–239.
Microbiología Aplicada / Applied Microbiology / Microbiologia aplicada

Most read articles by the same author(s)