Published Mar 27, 2019



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Jennifer Andrea Moreno-Benavides https://orcid.org/0000-0001-7530-2212

Enrique Javier Peña-Salamanca https://orcid.org/0000-0002-5135-6424

Neyla Benítez-Campo https://orcid.org/0000-0002-4050-0435

##plugins.themes.bootstrap3.article.details##

Abstract

In this study Bacillus cereus was used to evaluate the Cr6+ reducing capacity in electroplating effluents. TheCr6+ bioreduction assays were carried out using real waste water (RWW) from an electroplating plant and artificial wastewater (AWW), with and without added glucose. The AWW was prepared using Ni ,Zn ,Cu, Pb, and Cr salts, simulating RWW concentrations. The Cr6+ concentration and bacterial growth were monitored three times a day for the duration of five days. Also, were evaluated the effects of wastewater on B. cereus B1 morphology using scanning electron microscopy. Cr6+ reduction percentage of 100 % was reached for AWW containing glucose, of 71 % for AWW without glucose, of 75.6 % for RWW with glucose, and of 31.7 % for RWW without glucose. Despite the low reduction percentage obtained for RWW without glucose, concentrations of 0.14 mg/L of Cr6+ were reached, which were within allowed limits (0.5mg/L of Cr6+). Electron Microscopy showed alterations in the bacterial cell wall and a decrease in size, mainly in the bacteria exposed to RWW. The results allow us to propose B. cereus B1 as a promising microorganism for use in the bioremediation of effluents containing Cr6+.

Keywords

bioremediation, industrial effluents, glucose, heavy metals, metal plating

References
[1] Kumar M, Gogoi A, Kumari D, Borah R, Das P, Mazumder P, Kumar V. Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment, Journal of Hazardous, Toxic, and Radioactive Waste, 21(4): 1-16, 2017.
doi: 10.1061/(ASCE)HZ.2153-5515.0000351

[2] Mohanty M, Patra HK. Attenuation of chromium toxicity by bioremediation technology, Reviews of Environmental Contamination and Toxicology, 210: 1-34, 2011.
doi: 10.1007/978-1-4419-7615-4_1

[3] Sedman RM, Beaumont J, McDonald TA, Reynolds S, Krowech G, Howd R. Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water, Journal of Environmental Science and Health, Part C, 24(1): 155-182, 2006.
doi: 10.1080/10590500600614337

[4] Hackbarth FV, Maass D, De Souza AAU, Vilar VJP, De Souza SMA. Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor, Chemical Engineering Journal, 290: 477-489, 2016.
doi: http://dx.doi.org/10.1016/j.cej.2016.01.070

[5] Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review, Journal of Environmental Management, 146: 383-399, 2014.
doi: 10.1016/j.jenvman.2014.07.014

[6] Ministerio de Ambiente y Desarrollo Sostenible. Resolución número 0631: Por el cual se establecen los parámetros y los valores límites máximos permisibles en vertimientos puntuales a cuerpos de aguas superficiales y a sistemas de alcantarillado público y se dictan otras disposiciones, Colombia. 2015.
Retrieved from: https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf

[7] Zouboulis AI, Rousou EG, Matis KA, Hancock IC. Removal of toxic metals from aqueous mixtures. Part 1: Biosorption, Journal of Chemical Technology and Biotechnology, 74(5): 429-436, 1999.
doi: 10.1002/(SICI)1097-4660(199905)74:5<429::AIDJCTB62>3.0.CO;2-%23

[8] Garg SK, Tripathi M, Srinath T. Strategies for chromium bioremediation of tannery effluent, Reviews of Environmental Contamination and Toxicology, 217: 75-140, 2012.
doi: 10.1007/978-1-4614-2329-4_2

[9] Zahoor A, Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater, Journal of Environmental Sciences (China), 21(6): 814-820, 2009.
https://doi.org/10.1016/S1001-0742(08)62346-3

[10] Chen Z, Huang Z, Cheng Y, et al. Cr(VI) Uptake mechanism of Bacillus cereus, Chemosphere, 87(3): 211-216, 2012.
doi: 10.1016/j.chemosphere.2011.12.050

[11] Camargo FA, Okeke B, Bento F, Frankenberger W. Hexavalent chromium reduction by immobilized cells and the cell-free extract of Bacillus sp. ES 29, Bioremediation Journal, 8(1-2): 23-30, 2004.
doi: 10.1080/10889860490453140

[12] Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K. Reduction of Cr(VI) by a Bacillus sp., Biotechnology Letters, 28(4): 247-52, 2006.
doi: 10.1007/s10529-005-5526-z

[13] Zhao C, Yang Q, Chen W, Teng B. Removal of hexavalent chromium in tannery wastewater by Bacillus cereus, Canadian Journal of Microbiology, 58(1): 23-28, 2012.
doi: 10.1139/W11-096

[14] Tripathi M, Mishra SS, Tripathi VR, Garg SK. Predictive approach for simultaneous biosorption of hexavalent chromium and pentachlorophenol degradation by Bacillus cereus RMLAU1, Journal of Biotechnology, 10(32): 6052-6061, 2011.
doi: 10.5897/AJB10.2490

[15] American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). Standard methods for the examination of water and wastewater, Joint Editorial Board, Washington D.C., USA 1898.

[16] Tripathi M, Garg SK. Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity, Process Biochemistry, 48(3): 496-509, 2013.
doi: 10.1016/j.procbio.2013.02.009

[17] Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I. Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution, Chemosphere, 65(4): 644-650, 2006.
doi: 10.1016/j.chemosphere.2006.01.069

[18] Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnology Advances, 24(5): 427-451, 2006.
doi: 10.1016/j.biotechadv.2006.03.001

[19] Liu YG, Xu WH, Zeng GM, Li X, Gao H. Cr6+ reduction by Bacillus sp. isolated from chromium landfill, Process Biochemistry, 41(9): 1981-1986, 2006.
doi: 10.1016/j.procbio.2006.04.020

[20] Suh JH, Kim DS. Effects of Hg2+ and cell conditions on Pb2+ accumulation by Saccharomyces cerevisiae, Bioprocess Engineering, 23(4): 327-329, 2000.
doi: 10.1007/s004499900149

[21] Fosso-Kankeu E, Mulaba-Bafubiandi AF, Mamba BB, Barnard TG. Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms, Journal of Environmental Management, 92(10): 2786-2793, 2011.
doi: 10.1016/j.jenvman.2011.06.025

[22] Naik U, Srivastava S, Thakur I. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium, Environmental Science Pollution and Research International, 19(7): 3005-3014, 2012.
doi: 10.1007/s11356-012-0811-6

[23] Wang YT, Xiao C. Factors affecting hexavalent chromium reduction in pure cultures of bacteria, Water Research, 29(11): 2467-2474, 1995.
doi: 10.1016/0043-1354(95)00093-Z

[24] Wang YT. Microbial reduction of chromate. In: D.R. Lovley, ed. Environmental microbe-metal interactions, American Society for Microbiology Press, Washington, D.C., USA 2000. Chapter
doi: 10.1128/9781555818098.ch10

[25] Tripathi M, Vikram S, Jain RK, Garg SK. Isolation and growth characteristics of chromium (VI) and pentachlorophenol tolerant bacterial isolate from treated yannery effluent for its possible use in simultaneous bioremediation, Indian Journal of Microbiology, 51(1): 61-69, 2011.
doi: 10.1007/s12088-011-0089-2

[26] Malik A. Metal bioremediation through growing cells, Environment International, 30(2): 261-278, 2004.
doi: 10.1016/j.envint.2003.08.001

[27] Liu YG, Feng BY, Fan T, Zhou HZ, Li X. Tolerance and removal of chromium (VI) by Bacillus sp. strain YB-1 isolated from electroplating sludge, Transactions of Nonferrous Metals Society of China, 18(2): 480-487, 2008.
doi: 10.1016/S1003-6326(08)60085-0

[28] Chaturvedi MK. Studies on chromate removal by chromiumresistant Bacillus sp. isolated from tannery effluent, Journal of Environmental Protection, 2: 76-82, 2011.
doi: 10.4236/jep.2011.21008

[29] Camargo FA, Okeke BC, Bento FM, Frankenberger WT. In vitro reduction of hexavalent chromium by a cell free extract of Bacillus sp. ES 29 stimulated by Cu2+, Applied Microbiology and Biotechnology, 62: 569-573, 2003.
doi: 10.1080/10889860490453140
How to Cite
Moreno-Benavides, J. A., Peña-Salamanca, E. J., & Benítez-Campo, N. (2019). Reducing Cr6+ in electroplating wastewater with Bacillus cereus strain B1. Universitas Scientiarum, 24(1), 73–89. https://doi.org/10.11144/Javeriana.SC24-1.rcie
Section
Microbiología / Microbiology / Microbiologia