Published May 6, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Martha Lucia Ortiz-Moreno https://orcid.org/0000-0003-0172-9111

Jaleydi Cárdenas-Poblador https://orcid.org/0000-0002-9367-8683

Julián Agredo https://orcid.org/0000-0002-4044-7806

Laura Vanessa Solarte-Murillo https://orcid.org/0000-0002-9097-0734

##plugins.themes.bootstrap3.article.details##

Abstract

Mathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of Nostoc ellipsosporum with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Richards. N. ellipsosporum was grown in BG-11 liquid medium for 9 days, using 12 hours of photoperiod and the following treatments: white light (400-800 nm), red light (650-800 nm), yellow light (550-580 nm) and blue light (460-480 nm). Each experiment was performed in triplicate. The optical density (OD) was measured on days 1, 3, 5, 7 and 9, using a spectrophotometer at 650 nm. The maximum cell growth was obtained under white light (OD650 : 0.090 ± 0.008), followed by the yellow light (OD650 :0.057 ± 0.004). Conversely, blue light showed a marked inhibitory effect on the growth of N. ellipsosporum (OD650 : 0.009 ± 0.001). The results revealed that the Baranyi-Roberts model had a better fit with the experimental data from N. ellipsosporum growth in all four treatments. The findings from this modeling study could be used in several biotechnological applications that require the productionof N. ellipsosporum and its bioproducts.

Keywords

cyanobacteria, light, mathematical model, microbial growth

References
Abed RMM, Dobretsov S, & Sudesh K. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12, 2009.

Ahmad SA, Shukor MS, Masdor NA, Shamaan NA, Roslan MAH, Shukor MY. The growth of Paracoccus sp. SKG on acetonitrile is best modelled using the Buchanan three phase model. Journal of Environmental Bioremediation and Toxicology, 3 (1): 1-5, 2015.

Algal culturing techniques. (R.A. Andersen Ed.). Burlington: Phycological society of America, 2005.

Andersen RA. Algal culturing techniques, Phycological society of America, Burlington, USA, 2005.

Arteni AA, Ajlani G, & Boekema EJ. Structural organization of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta, 1787 (4), 272-279, 2009.
doi: 10.1016/j.bbabio.2009.01.009

Atta M, Idris A, Bukhari A, & Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technology, 148, 373378, 2013.
doi: 10.1016/j.biortech.2013.08.162

Baranyi J, & Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294, 1994.
doi: 10.1016/0168-1605(94)90157-0

Baranyi J, & Roberts TA. Mathematics of predictive food microbiology. International Journal of Food Microbiology, 26(2), 199218, 1995.
doi: 10.1016/0168-1605(94)00121-L

Baranyi J, Robinson TP, Kaloti A, & Mackey BM. Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27(1), 61-75, 1995.
doi: 10.1016/0168-1605(94)00154-X

Barsanti L, & Gualtieri P. Algae: anatomy, biochemistry and biotechnology. Boca Raton: CRC Press Taylor & Francis group, 2006.

Belda-Galbis CM, Martínez A, Rodrigo D. Antimicrobial effect of carvacrol on Escherichia coli K12 growth at different temperatures, 2011.
doi: 10.1142/9789814354868_0015

Benítez REH, Vidal DRA, & Guerrero JV. Efecto de la Inoculación de Cianobacterias en Cultivos de Interés Comercial en Zonas Semiáridas de La Guajira-Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20-31, 2018.
doi: 10.23850/24220582.889

Bland E, & Angenent LTJ. Pigment-targeted light wavelength and intensity promotes effcient photoautotrophic growth of Cyanobacteria. Bioresource technology, 216, 579-586, 2016.
doi: 10.1016/j.biortech.2016.05.116

Camargo EC, & Lombardi AT. Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana. Journal of Ap-plied Phycology, 30 (2), 861-871, 2018.
doi: 10.1007/s10811-017-1291-3

Castillo CMN, Rivera FCR, Díaz LE, Díaz AGL. Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga Haematococcus pluvialis, Nova, 15 (28): 19-31, 2017.

Cayré ME, Vignolo GM, Garro OA. Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y Brochothrix thermosphacta sobre emulsiones cárnicas cocidas, Información Tecnológica, 18(3): 23-29, 2007.
doi: 10.4067/S0718-07642007000300004

Celekli A, Yavuzatmaca M, & Bozkurt H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresource Technology, 100, 3625-3629, 2009.
doi: 10.1016/j.biortech.2009.02.055

Cepoi L. Chapter 11: Environmental and Technological Stresses and Their Management in Cyanobacteria. In: Cyanobacteria From Basic Science to Applications. Mishra AK, Tiwari DN, & Rai AN (Eds.). Elsevier, 217-244, 2019.

Charlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biology, 13 (1-2): 21-39, 2019.
doi: 10.3233/ISB-180470

Chen Q, Montesarchio D, & Hellingwerf KJ. ‘Direct conversion’: artificial photosynthesis with cyanobacteria. In Advances in Botanical Research, 79, 43-62, 2016.
doi: 10.1016/bs.abr.2016.03.001

Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, & Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389-3396, 2008.
doi: 10.1016/j.biortech.2007.08.013

Cibichakravarthy B, Venkatachalam S, & Prabagaran SR. Chapter 9: Unleashing Extremophilic Metabolites and Its Industrial Perspectives. In: Gupta BK, & Pande A (Eds). New and Future Developments in Microbial Biotechnology and Bioengineering. 119-130, 2019.
doi: 10.1016/B978-0-444-63504-4.00009-8

Crettaz Minaglia MC, Rosso L, Aranda O, Sedan D, Juárez I, Ventosi E, Gian-nuzzi LJI. Modelado matemático del crecimiento de Microcystis aeruginosa en condiciones de laboratorio bajo diferentes temperaturas. Ingeniería Sanitaria y Ambiental, 61-67, 2017.

Crnkovic CM, May DS, & Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. Journal of Applied Phycology, 1-10, 2017.
doi: 10.1007/s10811-017-1275-3

Cui L, Xu H, Zhu Z, & Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biology open, 6(9), 1329-1335, 2017.
doi: 10.1242/bio.026955

Dalgaard P, Koutsoumanis K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43: 183-196, 2001.
doi: 10.1016/s0167-7012(00)00219-0

Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA. Estimation of bacterial growth rates from turbidimetric and viable count data. International Journal of Food Microbiology, 23: 391-404, 1994.
doi: 10.1016/0168-1605(94)90165-1

Das P, Lei W, Aziz SS, & Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883-3887, 2011.
doi: 10.1016/j.biortech.2010.11.102

Da Silva Ferreira V, & Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 33(1), 20, 2017.
doi: 10.1007/s11274-016-2181-6

De Oliveira CA, Castro-Oliveira W, & Rocha SM. Effect of light intensity on the production of pigments in Nostoc spp. European Journal of Biology and Medical Science Research, 2(1), 23-36, 2014.

Delattre C, Pierre G, Laroche C, & Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv, 34(7), 1159-1179, 2016.
doi: 10.1016/j.biotechadv.2016.08.001

Dhar DW, Prasanna R, Pabbi S, & Vishwakarma R. Significance of cyanobacteria as inoculants in agriculture. In Algal Biorefinery: An Integrated Approach (pp. 339-374): Springer. 2015.
doi: 10.1007/978-3-319-22813-6_16

Fuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, & Vílchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14 (5), 100, 2016.
doi: 10.3390/md14050100

Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, & Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Applied Microbiology and Biotechnology, 103 (12), 4709-4721, 2019.
doi: 10.1007/s00253-019-09811-1

Gaytán-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, PérezMartínez AS, Alpuche-Solís Á, & Soria-Guerra RE. Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii. Biotechnol Prog, 32(6), 1404-1411, 2016.
doi: 10.1002/btpr.2368

Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583, 1825.
doi: 10.1098/rstl.1825.0026

Griffiths MJ, Garcin C, Van Hille RP, & Harrison ST. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2), 119-123, 2011.
doi: 10.1016/j.mimet.2011.02.005

Guo F, Zhao JAL, & Yang X. Life cycle assessment of microalgaebased aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects. Bioresource Technology, 221, 350-357, 2016.
doi: 10.1016/j.biortech.2016.09.044

Gupta S, Cox S, Rajauria G, Jaiswal AK, Abu-Ghannam N. Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts, Food and Bioprocess Technology, 5: 1907-1916, 2012.
doi: 10.1007/s11947-010-0502-6

Hagemann M, Kern R, Maurino VG, Hanson DT, Weber AP, Sage RF, & Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of experi-mental botany, 67(10), 2963-2976, 2016.
doi: 10.1093/jxb/erw063

Hai T, Ahlers H, Gorenflo V, & Steinbüchel A. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Applied Microbiology and Biotechnology, 53, 383-389, 2000.
doi: 10.1007/s002530051630

Halmi MIE, Shukor MS, Johari WLW, & Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology, 2(1), 1-6. 2014.

Han PP, Guo RJ, Shen SG, Yan RR, Wu YK, Yao SY, Wang HY, & Jia SR. Proteomic profiling of Nostoc flagelliforme reveals the common mechanism in promoting polysaccharide production by different light qualities. Biochemical Engineering Journal, 132, 68-78, 2018.
doi: 10.1016/j.bej.2017.12.006

Han PP, Shen SG, Wang HY, Sun Y, Dai YJ, & Jia SR. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium Nostoc flagelliforme. Algal Research, 9, 143-150, 2015. doi: 10.1016/j.algal.2015.02.019

Han PP, Shen SG, Guo RJ, Zhao DX, Lin YJ, Jia S, Yan RR, & Wu YK. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium
Nostoc flagelliforme. Journal of Agricultural and Food Chemistry, 67 (8), 2235-2244, 2019.
doi: 10.1021/acs.jafc.8b06176

Han PP, Shen SG, Wang HY, Yao SY, Tan ZL, Zhong C, & Jia SR. Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. Journal of Applied Phycology, 29 (496), 55-65, 2017a.
doi: 10.1007/s10811-016-0963-8

Han PP, Sun Y, Jia SR, Zhong C, & Tan ZLJC. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydrate polymers, 105, 145-151, 2014.
doi: 10.1016/j.carbpol.2014.01.061

Han PP, Yao SY, Guo RJ, Yan RR, Wu YK, Shen SG, & Jia SR. Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Nostoc flagelliforme. RSC Advances, 7, 45075-45084, 2017b.
doi: 10.1039/C7RA07982F

Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, & Chang JS. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275-282, 2014.
doi: 10.1016/j.biortech.2013.11.031

Ho MY, Soulier NT, Canniffe DP, Shen G, & Bryant DAJ. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. 37, 24-33, 2017.
doi: 10.1016/j.pbi.2017.03.006

Huang L. Optimization of a new mathematical model for bacterial growth. Food Control, 32(1), 283-288, 2013.
doi: 10.1016/j.foodcont.2012.11.019

Ibrahim S, Mansur A, Ahmad SA. Mathematical modelling of the growth of Caulobacter crescentus on caffeine. Journal of Environmental Microbiology and Toxicology, 6 (2): 13-17, 2018.

Infante C, Angulo E, Zárate A, Florez JZ, Barrios F, & Zapata C. Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3(2), 2012.

Itoh KI, Nakamura K, Aoyama T, Kakimoto T, Murakami M, & Takido T. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Letters, 55(2), 435-437, 2014.
doi: 10.1016/j.tetlet.2013.11.049

Johnson EM, Kumar K, & Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresource technology, 166, 541-547, 2014.
doi: 10.1016/j.biortech.2014.05.097

Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, & Kim HS. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Journal of Microbiology and Biotechnology, 25(1), 109-118. 2015.
doi: 10.4014/jmb.1409.09019

Khajepour F, Hosseini SA, Nasrabadi RG, & Markou G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Applied biochemistry and biotechnology, 176(8), 2279-2289, 2015.
doi: 10.1007/s12010-015-1717-9

Khanna P, Kaur A, & Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods, 163, 105656, 2019.
doi: 10.1016/j.mimet.2019.105656

Kim TH, Lee Y, Han SH, & Hwang SJ. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75-80, 2013.
doi: 10.1016/j.biortech.2012.11.134

Kim YS, & Lee SH. Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration. Environmental Engineering Research, 23(2), 216-222, 2018.
doi: 10.4491/eer.2017.193

Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynthesis Research, 126: 3-17, 2015.
doi: 10.1007/s11120-014-0031-7

Kokabi M, Yousefzadi M, Soltani M, & Arman M. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot-spring cyanobacterium Leptolyngbya cf. fragilis. Phycological Research, 67 (3), 215-220, 2019.
doi: 10.1111/pre.12374

Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, & Franco TT. Improving refinery wastewater for microalgal biomass production and CO2 biofixation: Predictive modeling and simulation. Journal of petroleum science and en-gineering, 78(3-4), 679-686, 2011.
doi: 10.1016/j.petrol.2011.07.003

Li H, Xie G, & Edmondson A. Evolution and limitations of primary mathematical models in predictive microbiology. British food journal, 109(8), 608-626, 2007.
doi: 10.1108/00070700710772408

Liu X, Sheng J, & Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 2011.
doi: 10.1073/pnas.1103014108

Loaiza NR, Vera P, Aiello-Mazzarri C, & Morales EJA. Comparación del crecimiento y composición bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales) en relación con el nitrato de sodio. Acta Biológica Colombiana, 21(2), 347-354, 2016.
doi: 10.15446/abc.v21n2.48883

Lotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, & Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. Cell Mol Biol (Noisy-le-grand), 63(9), 96-105, 2017.
doi: 10.14715/cmb/2017.63.9.17

Luimstra VM, Schuurmans JM, Verschoor AM et al. Blue light reduces photosynthetic effciency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research, 138, 177-189, 2018.
doi: 10.1007/s11120-018-0561-5

Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic effciency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynthesis Research, 1-11, 2019.
doi: 10.1007/s11120-019-00630-z

Ma R, Lu F, Bi Y, & Hu Z. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37, 1663-1669, 2015.
doi: 10.1007/s10529-015-1831-3

Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, & Cowan DAJ. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24(4), 819-840, 2015.
doi: 10.1007/s10531-015-0902-z

Margarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, & Costa JA. Spirulina platensis is more effcient than Chlorella homosphaera in carbohydrate productivity. Environ Technol, 1-8, 2016.
doi: 10.1080/09593330.2016.1254685

McBride RC, Smith VH, Carney LT, & Lane TW. Crop protection in open ponds. In: Slocombe SP, & Benemann JR (Eds.). Microalgal Production for Biomass and High-Value Products, 1st ed., CRC Press, 165-182, 2016.

Merli GO, Perazzi JR. Modelos de crecimiento en microbiología predictiva (Ecología microbiana cuantitativa). Estimación de modelos y simulación mediante dinámica de sistemas, XXVII Simposio Internacional de Estadística 5th International Workshop on Applied Statistics, Medellín, Colombia, 2017.

Mohamed MS, Tan JS, Kadkhodaei S, Mohamad R, Mokhtar MN, & Ariff AB. Kinetics and modeling of microalga Tetraselmis sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. Biochemical engineering journal, 88, 30-41, 2014.
doi: 10.1016/j.bej.2014.04.002

Morales E, Luna V, Navarro L, Santana V, Gordillo A, & Arévalo AJRE. Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 34(1-2), 129-149, 2017.
doi: 10.26807/remcb.v34i1-2.240

Motulsky HJ, & Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. The FASEB journal, 1(5), 365-374, 1987.
doi: 10.1096/fasebj.1.5.3315805

Mytilinaios I, Bernigaud I, Belot V, & Lambert RJW. Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of applied microbiology, 118(1), 161-174, 2014.
doi: 10.1111/jam.12695

Novoveska L, Franks DT, Wulfers TA, & Henley WJ. Stabilizing continuous mixed cultures of microalgae. Algal Research, 13(C), 126-133. 2016.
doi: 10.1016/j.algal.2015.11.021

Nozzi NE, Oliver JW, & Atsumi S. Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 1(7), 2013
doi: 10.3389/fbioe.2013.00007

Oldenhof H, Zachleder V, & Van Den Ende H. Blue-and redlight regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 41(3), 313-320, 2006.
doi: 10.1080/09670260600699920

Ojit S, Indrama T, Gunapati O, Avijeet SO, Subhalaxmi AS, Silvia CH, Indira DW, Romi KH, Minerva SH, & Thadoi DA. The response of phycobiliproteins to light qualities in Anabaena circinalis. Journal of Applied Biology and Biotechnology, 3, 1-6, 2015.
doi: 10.7324/JABB.2015.3301

Ooms MD, Graham PJ, Nguyen B, Sargent EH, & Sinton D. Light dilution via wave-length management for effcient high-density photobioreactors. Biotechnology and bioengineering, 114(6), 1160-1169, 2017.
doi: 10.1002/bit.26261

Pagels F, Guedes AC, Amaro HM, Kijjoa A, & Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37 (3), 422-443, 2019.
doi: 10.1016/j.biotechadv.2019.02.010

Pang K, Tang Q, Chen L, Wan B, Niu C, Yuan X, & Xiao S. NitrogenFixing heterocystous cyanobacteria in the Tonian period. Current Biology, 28(4), 616-622, 2018.
doi: 10.1016/j.cub.2018.01.008

Park H, & Lee CG. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnol J, 11(11), 1461-1470, 2016.
doi: 10.1002/biot.201600041

Pereyra DSV, & Ferrari SG. Extracellular Polymeric Substance (EPS) Production by Nostoc minutum under Different Laboratory Conditions. Advances in Microbiology, 6(05), 374, 2016.
doi: 10.4236/aim.2016.65036

Perni S, Andrew PW, Shama G. Estimating the maximum growth rate from microbial growth curves: definition is everything. Food microbiology, 22 (6): 491-495, 2005.
doi: 10.1016/j.fm.2004.11.014

Pla ML, Oltra S, Esteban MD, Andreu S, Palop A. Comparison of primary models to predict microbial growth by the plate count and absorbance methods. BioMed Research International, 365025, 2015.
doi: 10.1155/2015/365025

Rather AH, & Singh S. Preliminary evaluation of impact of monochromatic light on the biosynthesis of astaxanthin in green alga Haematococcus pluvialis. World News of Natural Sciences,
19, 45-50, 2018.

Rehman NNMA, & Dixit PP. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonas aeruginosa NR1. Journal of King Saud University Science.
doi: 10.1016/j.jksus.2019.01.004

Richards FJ. A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290-301, 1959.
doi: 10.1093/jxb/10.2.290

Richmond A. Handbook of microalgal culture: Biotechnology and applied phycology. Ames: Blackwell publishing. 2004.

Rivera-González MV, Gómez-Gómez L, & Cubillos-Hinojosa JG. Effect of humic acids on the growth and the biochemical composition of Arthrospira platensis. Revista Colombiana de Biotecnología, 19(1), 71-81, 2017.
doi: 10.15446/rev.colomb.biote.v19n1.58316

Ryu BG, Kim J, Han JI, & Yang JW. Feasibility of using a microalgalbacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresource Technology, 225, 58-66, 2017.
doi: 10.1016/j.biortech.2016.11.029

Sanmartín P, Vázquez-Nion D, Arines J, Cabo-Domínguez L, & Prieto B. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination. International Biodeterioration and Biodegradation, 122, 107-115, 2017.
doi: 10.1016/j.ibiod.2017.05.003

Santiesteban-López N, López-Malo A. Descripción e importancia de algunos modelos predictivos utilizados como herramienta para la conservación de alimentos. Temas Selectos de Ingeniería de Alimentos, 2 (2): 14-26, 2008.

Schuurman R, Matthijs J, & Hellingwerf K. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. Photosynthesis research, 132(1), 69-82. 2017.
doi: 10.1007/s11120-016-0329-8

Shalaby EA, Atta MB, Sleem IA, Mohamed MA, Lightfoot DA, & El-Shemy HA. Cytotoxicity, antioxidant and antiviral potential of aqueous extract from Nostoc muscorum cultivated in various inexpensive media. Waste and Biomass Valorization, 10(5), 1419-1431, 2019.
doi: 10.1007/s12649-017-0188-3

Shukla M, Tabassum R, Singh R, & Dhar DW. Influence of light intensity, temperature and CO2 concentration on growth and lipids in green algae and cyanobacteria. Indian Journal of experimental biology, 54, 482-487, 2016.

Silva APR, Longhi DA, Dalcanton F, Aragão GMF. Modelling the growth of lactic acid bacteria at different temperatures. Brazilian archives of biology and technology, 61: e18160159, 2018.
doi: 10.1590/1678-4324-2018160159

Singh NK, Sonani RR, Rastogi RP, & Madamwar D. The phycobilisomes: an early requisite for effcient photosynthesis in cyanobacteria. EXCLI journal, 14, 268, 2015.
doi: 10.17179/excli2014-723

Singh RS, Walia AK, Khattar JS, Singh DP, & Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496, 2017.
doi: 10.1016/j.ijbiomac.2017.04.041

Singh S, & Singh P. Effect of temperature and light on the growth of algae species: a review. Renewable and Sustainable Energy Reviews, 50, 431-444, 2015.
doi: 10.1016/j.rser.2015.05.024

Sinha RP, Ambasht NK, Sinha JP, & Ha¨der DP. Wavelengthdependent induction of a mycosporine-like amino acid in a ricefield cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochemical and Photobiological Sciences, 2, 171-6, 2003.
doi: 10.1039/b204167g

Solhaug KA, Xie L, Gauslaa Y. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant and Cell Physiology, 55: 1404-1414, 2014.
doi: 10.1093/pcp/pcu065

Supriyanto, Noguchi R, Ahamed T, Rani DS, Sakurai K, Nasution MA, Wibawa DS, Demura M, & Watanabe MM. Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosystems Engineering, 177, 122-129, 2019.
doi: 10.1016/j.biosystemseng.2018.10.002

Swinnen IAM, Bernaerts K, Dens EJ, Geeraerd AH, & Van Impe JF. Predictive modelling of the microbial lag phase: a review. International journal of food microbiology, 94(2), 137-159. 2004.
doi: 10.1016/j.ijfoodmicro.2004.01.006

Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, & Idris A. 2014. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource technology, 162, 38-44. doi: 10.1016/j.biortech.2014.03.113

Tevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresource Technology, 119: 419-424, 2012.
doi: 10.1016/j.biortech.2012.05.124

Tiwari ON, Devi WI, Silvia C, Devi AT, Oinam G, Singh OA, Singh KO, Indrama T, Sharma AS, Khangembam R, Shamjetshaban M, Miranda L, & Prasanna R. Modula-tion of phycobiliprotein production in Nostoc muscorum through culture manipulation. Journal of Applied Biology & Biotechnology, 3(04), 011-016, 2015.
doi: 10.7324/JABB.2015.3403

Tóth TN, Chukhutsina V, Domonkos I, Knoppová J, Komenda J, Kis M, Gombos ZJB. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847(10), 1153-1165, 2015.
doi: 10.1016/j.bbabio.2015.05.020

Trejos VM, Alzate JF, Garcia MÁG. Descripción matemática y análisis de estabilidad de procesos fermentativos, text, 76 (158): 111-121, 2009.

Vanegas DM, Ramírez ME. Correlación del crecimiento de Pseudomonas fluorescens en la producción de polihidroxialcanoatos de cadena media (PHAMCL) mediante modelos primarios de Gompertz, Logístico y Baranyi.Información tecnológica, 27 (2): 87-96, 2016.
doi: 10.4067/S0718-07642016000200011

Xiong S, Fan J, & Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. Applied Microbiology and Biotechnology, 86, 805-812, 2010.
doi: 10.1007/s00253-010-2470-1

Xu L, Yong H, Tu X, Wanga Q, & Fan J. Physiological and proteomic analysis of Nostoc flagelliforme in response to alkaline pH shift for polysaccharide accumulation. Algal Research, 39, 101444, 2019.
doi: 10.1016/j.algal.2019.101444

Yang YW, Yin YC, Li ZK, Huang D, Shang JL, Chen M, & Qiu BS. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc agelliforme to desiccation. Photosynthesis Research, 140 (1), 103-113, 2019.
doi: 10.1007/s11120-019-00629-6

You Z, Xu H, Zhang S, Kim H, Chiang PC, Yun W, Zhang L, He M. Comparison of petroleum hydrocarbons degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. Applied Sciences, 8: 2551, 2018.
doi: 10.3390/app8122551

Zhao X, Ma R, Liu X, Ho SH, Xie Y, & Chen J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42 (3), 435-443, 2019.
doi: 10.1007/s00449-018-2047-4

Znad H, Al Ketife AM, & Judd S. Enhancement of CO2 biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film. Environmental Technology, 1-7, 2018.
doi: 10.1080/09593330.2018.1437778

Zwietering MH, Jongenburger I, Rombouts FM, & Van’t Riet K. Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881, 1990.
doi: 0099-2240/90/061875-07$02.00/0
How to Cite
Ortiz-Moreno, M. L., Cárdenas-Poblador, J., Agredo, J., & Solarte-Murillo, L. V. (2020). Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum. Universitas Scientiarum, 25(1), 113–148. https://doi.org/10.11144/Javeriana.SC25-1.mte
Section
Microbiología / Microbiology / Microbiologia