Published Feb 24, 2020


Google Scholar
Search GoogleScholar

Paula M Peña-Pascagaza

Nathalia A López-Ramírez

Miguel A Ballen-Segura



Although polystyrene (PS) is considered a non-biodegradable material, recent work has shown the degradation capacity of this material by microorganisms, especially those that are part of the natural microbiota of the digestive tract of some invertebrates. The present work sought to evaluate the growth of the larva of the mealworm (Tenebrio molitor) and its bacteria, using PS as the sole source of carbon. In this way it was possible to demonstrate the consumption of PS plates by the larva, found in holes and tunnels in the material, however, nutritionally it is not enough for the larva to gain biomass, notably reducing its size and time survival. Similarly, bacteria isolated from the digestive tract of T. molitor presented the ability to generate biofilms o n PS s heets, g enerating c hanges ( cracks, holes, etc.) in them, which were observed under scanning electron microscopy (SEM), indicating the possible use of this material as a carbon source for its growth.


beetle, gut bacteria, polystyrene, Styrofoam, Tenebrio

Acoplásticos. Plásticos en Colombia. XLV ed, Bogotá. 2017.

Asmita K, Shubhamsingh T, Tejashree S. Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India. International Research Journal of Environmental Sciences, 4(3): 77-85, 2015.

Atiq N, Ahmed S, Ali MI, Ahmad B, Robson G. Isolation and identification of polystyrene biodegrading bacteria from soil. African Journal of Microbiology Research, 4(14): 1537-1541, 2010.

Barnes DK, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society London B: Biological Sciences, 364(1526): 1985-1998, 2009.
doi: 10.1098/rstb.2008.0205

Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), R292-R293. 2017.
doi: 10.1016/j.cub.2017.02.060

Božek M, Hanus-Lorenz B, Rybak J. The studies on waste biodegradation by Tenebrio molitor. E3SWeb of Conferences. EDP Sciences. pp. 00011. 2017.
doi: 10.1051/e3sconf/20171700011

Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut microbes, 3(4), 307-321. 2012.
doi: 10.4161/gmic.19896

Broderick NA, Raffa KF, Goodman RM, Handelsman J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Applied and Environmental Microbiology, 70(1), 293-300. 2004.
doi: 10.1128/AEM.70.1.293-300.2004

Cardoso ECL, Oliveira RR, Machado GAF, Moura EA. Study of Flexible Films Prepared from PLA/PBAT Blend and PLA E-Beam Irradiated as Compatibilizing Agent. in: Characterization of Minerals, Metals, and Materials 2017. Springer, pp. 121-129. 2017.
doi: 10.1007/978-3-319-51382-9_14

Catalán TP, Barceló M, Niemeyer HM, Kalergis, AM, Bozinovic F. Pathogen-and diet-dependent foraging, nutritional and immune ecology in mealworms. Evolutionary Ecology Research, 13(7), 711- 723. 2011.

Desmet K, Schelfaut M, Sandra P. Determination of bromophenols as dioxin precursors in combustion gases of fire retarded extruded polystyrene by sorptive sampling-capillary gas chromatographymass spectrometry. Journal of Chromatography A, 1071(1-2), 125- 129. 2005.
doi: 10.1016/j.chroma.2004.12.019

Ferrándiz-Mas V, García-Alcocel E. Durability of expanded polystyrene mortars. Construction and Building Materials, 46, 175- 182. 2013.
doi: 10.1016/j.conbuildmat.2013.04.029

Ho BT, Roberts TK, Lucas S. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Critical Reviews in Biotechnology, 38(2), 308-320. 2018.
doi: 10.1080/07388551.2017.1355293

Ichikawa T and Kurauchi T. Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles. Zoological science, 26(8), 525-530. 2009.
doi: 10.2108/zsj.26.525

Kane MD and Breznak JA. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Applied and Environmental Microbiology, 57(9), 2628-2634. 1991.

Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh PC. Degradation of styrene g-cassava starch filled polystyrene plastics. Polymer Degradation and Stability, 66(3), 323- 335. 1999.
doi: 10.1016/S0141-3910(99)00082-8

Moqadam SI, Mirdrikvand M, Roozbehani B, Kharaghani A, Shishehsaz MR. Polystyrene pyrolysis using silica alumina catalyst in fluidized bed reactor. Clean Technologies and Environmental Policy, 17(7), 1847-1860. 2015.
doi: 10.1007/s10098-015-0899-8

Orr IG, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology, 65(1), 97-104. 2004.
doi: 10.1007/s00253-004-1584-8

Santo Domingo JW, Kaufman MG, Klug MJ, Tiedje JM. Characterization of the cricket hindgut microbiota with fluorescently labeled rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology, 64(2), 752-755. 1998.

Sekhar VC, Nampoothiri KM, Mohan AJ, Nair NR, Bhaskar T, Pandey A. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347-354. 2016.
doi: 10.1016/j.jhazmat.2016.07.008

Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KS. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environmental Science and Pollution Research International, 23(18), 18307-18319. 2016.
doi: 10.1007/s11356-016-7000-y

Velasco A, Alonso S, Garcia JL, Perera J, Díaz E. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. Strain Y2. Journal of Bacteriology, 180(5), 1063-1071. 1998.

Wilson M. The morphology and mechanism of the pupal gin-traps of Tenebrio molitor L.(Coleoptera, Tenebrionidae). Journal of Stored Products Reserach, 7(1), 21-30. 1971.
doi: 10.1016/0022-474X(71)90034-8

Wynants E, Crauwels S, Lievens B, Luca S, Claes J, Borremans A, Bruyninckx L, Van Campenhout L. Effect of post harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 42, 8-15. 2017.
doi: 10.1016/j.ifset.2017.06.004

Yang SS, Brandon AM, Flanagan JCA, Yang J, Ning D, Cai S Y, Fan HQ, Wang ZY, Ren J, Benbow E. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. 2018.
doi: 10.1016/j.chemosphere.2017.10.117

Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and mineralization of polystyrene by plasticeating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science and Technology, 49(20), 12080-12086. 2015a.
doi: 10.1021/acs.est.5b02661

Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science Technology, 49(20), 12087-12093. 2015b.
doi: 10.1021/acs.est.5b02663

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199. 2016.
doi: 10.1126/science.aad6359

Zalasiewicz J, Waters CN, do Sul J AI, Corcoran PL, Barnosky AD, Cearreta A, Edgeworth M, Galuszka A, Jeandel C, Leinfelder R. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene, 13, 4-17. 2016.
doi: 10.1016/j.ancene.2016.01.002
How to Cite
Peña-Pascagaza, P. M., López-Ramírez, N. A., & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53.
Applied Microbiology