Published Jul 19, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Dorian Polo-Cerón http://orcid.org/0000-0002-6778-2209

María Mercedes Hincapié-Otero

Andrey Joaqui-Joaqui

##plugins.themes.bootstrap3.article.details##

Abstract

N-acylhydrazones 2-(4-chlorophenyl)-N0 -(2-hydroxybenzylidene)acetohydrazide, N0 -(2-hydroxybenzylidene)-2-(4-methoxyphenyl)acetohydrazide, 2-(4-chlorophenyl)-N0 -(2,4-dihydroxybenzylidene)-acetohydrazide, and N0 -(2,4-dihydroxybenzylidene)-2-(4-methoxyphenyl)acetohydrazide were successfully synthesized by a multistep procedure. The obtained organic molecules were characterized by spectroscopic techniques (FT-IR, 1D and 2D NMR, UV-Vis) and mass spectrometry. The structure of 2-(4-chlorophenyl)-N0 -(2-hydroxybenzylidene)acetohydrazide was also confirmed by X-ray diffraction. Ab initio computational simulations of the ligand spectra were in good agreement with experimental data and validated the hypothesis about the existence of a conformational mixture of each ligand in solution. Finally, the complexation potential of the synthesized ligands to Cu2+ was assessed by continuous variation experiments and FT-IR spectroscopy.

Keywords

Conformers, chelating ligands, DFT calculations, N-acylhydrazones, Schiff base, X-ray crystal structure

References
[1] Chen G, Lan HH, Cai SL, Sun B, Li XL, He ZH, Zheng SR, Fan J, Liu Y, ZhangWG. Stable Hydrazone-Linked Covalent Organic Frameworks Containing O,N,O-Chelating Sites for Fe(III) Detection in Water, ACS Applied Materials & Interfaces, 11(13):12830–12837, 2019.
doi: 10.1021/acsami.9b02640

[2] Singh AK, Thakur S, Pani B, Ebenso EE, Quraishi MA, Pandey AK. 2-Hydroxy- N-((Thiophene 2-Yl)Methylene)Benzohydrazide: Ultrasound-Assisted Synthesis and Corrosion Inhibition Study, ACS Omega, 3(4):4695–4705, 2018.
doi: 10.1021/acsomega.8b0000

[3] Tsai YT, Chen, CY, Hsieh YJ, Tsai ML. Selective C Alcohol Oxidation of Lignin Substrates Featuring a -O-4 Linkage by a Dinuclear Oxovanadium Catalyst via Two-Electron Redox Processes, European Journal of Inorganic Chemistry, 2019(43):4637–4646, 2019.
doi: 10.1002/ejic.201900807

[4] Ebrahimipour SY, Sheikhshoaie I, Mohamadi M, Suarez S, Baggio R, Khaleghi M, Torkzadeh-Mahani, M, Mostafavi A. Synthesis, Characterization, X-Ray Crystal Structure, DFT Calculation, DNA Binding, and Antimicrobial Assays of Two New Mixed-Ligand Copper(II) Complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 142:410–422, 2015.
doi: 10.1016/j.saa.2015.01.088

[5] Mathew N, Sithambaresan M, Kurup MRP. Spectral Studies of Copper(II) Complexes of Tridentate Acylhydrazone Ligands with Heterocyclic Compounds as Coligands: X-Ray Crystal Structure of One Acylhydrazone Copper(II) Complex, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5):1154–1161, 2011.
doi: 10.1016/j.saa.2011.04.036

[6] Burgos-Lopez Y, Del Plá J, Balsa LM, León IE, Echeverría GA, Piro OE, García-Tojal J, Pis-Diez R, González-Baró AC, Parajón-Costa BS. Synthesis, Crystal Structure and Cytotoxicity Assays of a Copper(II) Nitrate Complex with a Tridentate ONO Acylhydrazone Ligand. Spectroscopic and Theoretical Studies of the Complex and Its Ligand, Inorganica Chimica Acta, 487:31–40, 2019.
doi: 10.1016/j.ica.2018.11.039

[7] Aboafia SA, Elsayed SA, El-Sayed AKA, El-Hendawy AM. New Transition Metal Complexes of 2,4-Dihydroxybenzaldehyde Benzoylhydrazone Schiff Base (H2dhbh): Synthesis, Spectroscopic Characterization, DNA Binding/Cleavage and Antioxidant Activity, Journal of Molecular Structure, 1158:39–50, 2018.
doi: 10.1016/j.molstruc.2018.01.008

[8] Repich HH, Orysyk SI, Orysyk VV, Zborovskii YL, Melnyk AK, Trachevskyi VV, Pekhnyo VI, Vovk MV. Influence of Synthesis Conditions on Complexation of Cu (II) with O,N,O Tridentate Hydrazone Ligand. X-Ray Diffraction and Spectroscopic Investigations, Journal of Molecular Structure, 1146:222–232, 2017.
doi: 10.1016/j.molstruc.2017.05.140

[9] Sutradhar M, Kirillova MV, Guedes Da Silva, MFC, Liu CM, Pombeiro AJL. Tautomeric Effect of Hydrazone Schiff Bases in Tetranuclear Cu(II) Complexes: Magnetism and Catalytic Activity towards Mild Hydrocarboxylation of Alkanes, Dalton Transactions 42(47):16578–16587, 2013.
doi: 10.1039/c3dt52453a

[10] Shebl M. Coordination Behavior of New Bis(Tridentate ONO, ONS and ONN) Donor Hydrazones towards Some Transition Metal Ions: Synthesis, Spectral, Thermal, Antimicrobial and Antitumor Studies, Journal of Molecular Structure, 1128:79–93, 2017.
doi: 10.1016/j.molstruc.2016.08.056

[11] Alagesan M, Bhuvanesh NSP, Dharmaraj N. Binuclear Copper Complexes: Synthesis, X-Ray Structure and Interaction Study with Nucleotide/Protein by in Vitro Biochemical and Electrochemical Analysis. European Journal of Medicinal Chemistry, 78:281–293, 2014.
doi: 10.1016/j.ejmech.2014.03.043

[12] González-Baró AC, Pis-Diez R, Parajón-Costa BS, Rey NA. Spectroscopic and Theoretical Study of the O-Vanillin Hydrazone of the Mycobactericidal Drug Isoniazid. Journal of Molecular Structure, 1007:95–101, 2012.
doi: 10.1016/j.molstruc.2011.10.026

[13] Fan C, Zhao J, Zhao B, Zhang S, Miao J. Novel Complex of Copper and a Salicylaldehyde Pyrazole Hydrazone Derivative Induces Apoptosis through Up-Regulating Integrin b4 in Vascular Endothelial Cells, Chemical Research in Toxicology, 22(9):1517–1525, 2009.
doi: 10.1021/tx900111y

[14] Singh VP, Singh S, Singh DP. Synthesis, Characterization and Biocidal Activity of Some Transition Metal(II) Complexes with Isatin Salicylaldehyde Acyldihydrazones, Journal of Enzyme Inhibition and Medicinal Chemistry, 27(3):319–329, 2012.
doi: 10.3109/14756366.2011.588228

[15] Raja DS, Bhuvanesh NSP, Natarajan K. Structure-Activity Relationship Study of Copper(II) Complexes with 2-Oxo-1,2-Dihydroquinoline-3-Carbaldehyde (4’-Methylbenzoyl) Hydrazone: Synthesis, Structures, DNA and Protein Interaction Studies, Antioxidative and Cytotoxic Activity. Journal of Biological Inorganic Chemistry, 17(2):223–237, 2012.
doi: 10.1007/s00775-011-0844-1

[16] Gou Y, Zhang Y, Qi J, Zhou Z, Yang F, Liang H. Enhancing the Copper(II) Complexes Cytotoxicity to Cancer Cells through Bound to Human Serum Albumin, Journal of Inorganic Biochemistry, 144:47–55, 2015.
doi: 10.1016/j.jinorgbio.2014.12.012

[17] Monfared HH, Vahedpour M, Yeganeh MM, Ghorbanloo M, Mayer P, Janiak C. Concentration Dependent Tautomerism in Green [Cu(HL1)(L2)] and Brown [Cu(L1)(HL2)] with H2L1 = (E)-N-(2-Hydroxy-3-Methoxybenzylidene) Benzoylhydrazone and HL2 =Pyridine-4-Carboxylic (Isonicotinic) Acid, Dalton Transactions, 40(6):1286–1294, 2011.
doi: 10.1039/c0dt00371a

[18] Dennington R, Keith TA, Millam JM. GaussView, Version 6. Semichem Inc.: Shawnee Mission, KS 2016.

[19] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09W.
Wallingford CT 2009.

[20] Jamroz MH. Vibrational Energy Distribution Analysis VEDA 4. Warsaw.

[21] Dilanyan ÉR, Arsenyan FG, Stepanyan GM, Akopyan LG. Synthesis and Biological Activity of N-Acylhydrazones, Pharmaceutical Chemistry Journal, 30(6):368–370, 1996.
doi: 10.1007/BF02219321

[22] Desai NC, Shah MD, Bhavsar AM, Saxena AK. Synthesis and QSAR Studies of 4-Oxo- Thiazolidines and 2-Oxo-Azetidines as Potential Antibacterial Agents, Indian Journal of Chemistry - Section B Org. Med. Chem, 47B(07):1135–1144, 2008.
https://doi:10.1002/chin.20084603

[23] Jamróz MH. Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114:220–230, 2013.
doi: 10.1016/j.saa.2013.05.096

[24] Jamróz MH, Dobrowolski JC, Brzozowski R. Vibrational Modes of 2,6-, 2,7-, and 2,3- Diisopropylnaphthalene. A DFT Study, Journal of Molecular Structure, 787(1–3):172–183, 2006.
doi: 10.1016/j.molstruc.2005.10.044

[25] Wong MW. Vibrational Frequency Prediction Using Density Functional Theory. Chemical Physics. Letters, 256(4–5):391–399, 1996.
doi: 10.1016/0009-2614(96)00483-6

[26] Irikura KK, Johnson RD, Kacker RN. Uncertainties in Scaling Factors for Ab Initio Vibrational Frequencies, Journal of Physical Chemistry A, 109(37):8430–8437, 2005.
doi: 10.1021/jp052793n

[27] Socrates G. Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons Ltd, Chichester, England 2001.

[28] VanderLubbe SCC, FonsecaGuerra C. The Nature of Hydrogen Bonds: A Delineation of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths, Chemistry – An Asian Journal, 14(16):2760-2769, 2019.
doi: 10.1002/asia.201900717

[29] Grabowski SJ. What Is the Covalency of Hydrogen Bonding? Chemical Reviews, 111(4):2597–2625, 2011.
doi: 10.1021/cr800346f

[30] Pareras G, Palusiak M, Duran M, Solà M, Simon S. Tuning the Strength of the Resonance- Assisted Hydrogen Bond in o-Hydroxybenzaldehyde by Substitution in the Aromatic Ring, Journal of Physical Chemistry A, 122(8):2279–2287, 2018.
doi: 10.1021/acs.jpca.7b12066

[31] Kumler WD, Strait LA, Alpen EL. The Ultraviolet Absorption Spectra of -Phenylcarbonyl Compounds, Journal of the American Chemical Society, 72(4):1463–1466, 1950.
doi: 10.1021/ja01160a010

[32] Parr RG, Pearson RG. Absolute Hardness: Companion Parameter to Absolute Electronegativity, Journal of the American Chemical Society, 105(26):7512–7516, 1983.
doi: 10.1021/ja00364a005

[33] Parr RG, Szentpály LV, Liu S. Electrophilicity Index, Journal of the American Chemical Society, 121(9):1922–1924, 1999.
doi: 10.1021/ja983494x

[34] Koopmans T. Über Die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms, Physica, 1(1–6):104–113, 1934.
doi: 10.1016/S0031-8914(34)90011-2

[35] Arunagiri C, Anitha AG, Subashini A, Selvakumar S. Synthesis, X-Ray Crystal Structure, Vibrational Spectroscopy, DFT Calculations, Electronic Properties and Hirshfeld Analysis of (E) -4-Bromo-N’-(2,4-Dihydroxy-Benzylidene) Benzohydrazide, Journal of Molecular Structure, 1163:368–378, 2018.
doi: 10.1016/j.molstruc.2018.03.023

[36] Arunagiri C, Anitha AG, Subashini A, Lokanath NK. X–Ray Crystal Structure, Hirshfeld Surface Analysis, DFT and Electronic Properties of (E)–4–Chloro–N–(2,4–Dihydroxy–Benzylidene) Benzohydrazide, Chemical Data Collections,
19:100174, 2019.
doi: 10.1016/j.cdc.2018.100174

[37] Lopes AB, Miguez E, Kümmerle AE, Rumjanek VM, Fraga CAM, Barreiro EJ. Characterization of Amide Bond Conformers for a Novel Heterocyclic Template of N-Acylhydrazone Derivatives, Molecules, 18(10):11683–11704, 2013.
doi: 10.3390/molecules181011683

[38] Huggins MT, Kesharwani T, Buttrick J, Nicholson C. Variable Temperature NMR Experiment Studying Restricted Bond Rotation. Journal of Chemical Education, 97(5):1425-1429, 2020.
doi: 10.1021/acs.jchemed.0c00057

[39] Stewart WE, Siddall TH. Nuclear Magnetic Resonance Studies of Amides, Chemical Reviews, 70(5):517–551, 1970.
doi: 10.1021/cr60267a001

[40] Ji YW, Dai FY, Zhou B. Designing Salicylaldehyde Isonicotinoyl Hydrazones as Cu(II) Ionophores with Tunable Chelation and Release of Copper for Hitting Redox Achilles Heel of Cancer Cells, Free Radical Biology and Medicine, 129:215–226, 2018.
doi: 10.1016/j.freeradbiomed.2018.09.017

[41] Costes JP, Duhayon C, Vendier L. Synthesis, Structural Characterization, and Magnetic Properties of a Copper-Gadolinium Complex Derived from a Hydroxybenzohydrazide Ligand, Inorganic Chemistry, 53(4):2181–2187, 2014.
doi: 10.1021/ic4027283
How to Cite
Polo-Cerón, D., Hincapié-Otero, M. M., & Joaqui-Joaqui, A. (2021). Synthesis and characterization of four N-acylhydrazones as potential O,N,O donors for Cu2+: An experimental and theoretical study. Universitas Scientiarum, 26(2), 193–215. https://doi.org/10.11144/Javeriana.SC26-2.saco
Section
Chemistry