Published Nov 22, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Samir Ananou

Zineb Bougarne

Laila Manni

Naima El Ghachtouli

##plugins.themes.bootstrap3.article.details##

Abstract

The conventional pretreatments used during the valorization of paper waste in renewable energies are expensive, long, slow, require high temperatures and particularly not eco-friendly. However, the application of microbial cultures with cellulolytic capabilities becomes an attractive and low-cost strategy. Therefore, the aim of this study was to screen an efficient microbial culture and its evaluation as a starter culture during hydrolysis process of biogas and bioethanol production. Our results indicated that from 18 isolates, two bacteria (identified as Pseudomonas horyzihabitans and Serratia liquefaciens) and one consortium (CS2, predominated by Enterobacteriaceae) had an important cellulosic hydrolysis activity. The application of the selected consortium as a starter culture during the hydrolysis process of biogas and bioethanol production improved yields. Indeed, the application of CS2 enhanced the biogas and bioethanol yields to 9.4 mL g−1 and 78.2 μL g−1 (P < 0.05) respectively. Also, starter culture CS2 addition reduced the time needed for cellulosic hydrolysis to 21 days, respect to 24 days in control sample, during biogas production under psychrophilic temperature. Thus, this low cost and practical procedure can be used as an efficient strategy to release sugars from paper waste, to reduce the time needed for cellulosic biodigestion, and to enhance the biogas and bioethanol recovered.

Keywords

anaerobic biodigestion, cellulosic biomass, renewable energy, paper waste

References
Anand AAP, Sripathi K. Digestion of cellulose and xylan by symbiotic bacteria in the intestine of the Indian flying fox (Pteropus giganteus), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 139: 65–69, 2004.
doi: 10.1016/j.cbpb.2004.07.006

Basso LC, Basso TO, Rocha SN. Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation, In: Biofuel Production-Recent Developments and Prospect, D.M.A.D.S. Bernardes ed. IntechOpen. pp. 85–100, 2011.
doi: 10.5772/17047

Bekkering J, Broekhuis AA, Van Gemert WJT. Optimisation of a green gas supply chain – A review, Bioresource Technology, 101: 450–456, 2010.
doi: 10.1016/j.biortech.2009.08.106

Besnard S. Méthabiogaz, valoriser les matières organiques en gaz vert, Techniques Sciences Méthodes, 9: 5–6, 2019.

Bond K, Stutzenberger F. A note on the localization of cellulosome formation in Thermomonospora curvata, Journal of Applied Bacteriology, 67: 605–609, 1989.

Bouallagui H, Ben Cheikh R, Marouani L, Hamdi M. Mesophilic biogas production from fruit and vegetable waste in a tubular digester, Bioressource Technology, 86: 85–89, 2003.
doi: 10.1016/S0960-8524(02)00097-4

Brady MT, Leber A. Less Commonly Encountered Nonenteric Gram-Negative Bacilli, In Principles and Practice of Pediatric Infectious Diseases (Fifth Edition). Pages 855–859.e3, 2018.
doi: 10.1016/C2013-0-19020-4

Brune A. Symbionts Aiding Digestion, In: Encyclopedia of Insects (Second Edition), Eds. Vincent Resh and Ring Cardé. Academic Press. Pp. 978–983, 2009.

Byadgi SA, Kalburgi PB. Production of Bioethanol from Waste Newspaper, Procedia Environmental Sciences, 35: 555–562. 2016.
doi: 10.1016/j.proenv.2016.07.040

Caglar AE. The importance of renewable energy consumption and FDI inflows in reducing environmental degradation: Bootstrap ARDL bound test in selected 9 countries, Journal of Cleaner Production, 264: 121663, 2020.
doi: 10.1016/j.jclepro.2020.121663

Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderon LA, Mieczkowski PA, Argueso JL, Pereira GA. Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production, Microbial Cell Factories, 14: 13, 2015.
doi: 10.1186/s12934-015-0196-6

Chatanta DK, Attri C, Gopal K, Devi M, Gupta G, Bhalla TC. Bioethanol production from apple pomace left after juice extraction, The Internet Journal of Microbiology, 5: 1–10, 2008.
doi: 10.5580/3a8

Chen Y, Knappe D, Barlaz M. Effect of cellulose/hemicellulose and lignin on the bioavailability of toluene sorbed to waste paper, Environmental Science and Technology, 38: 3731- 3736, 2004.
doi: 10.1021/es035286x

Claes A, Deparis Q, Foulquié-Moreno MR, Thevelein JM. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates, Metabolic Engineering, 59: 131–141, 2020.
doi: 10.1016/j.ymben.2020.02.004

Climate Investment Funds. Ouarzazate Solar Power Station. 2018. Da Silva BS, Dantzger M, Assis MA, Gallardo JCM, Teixeira SG, Missawa SK, Domingues RR, Carazzolle MF, Lunardi I, Leme AFP, Pereira GAG, Parreiras LS. Lignocellulolytic characterization and comparative secretome analysis of a Trichoderma erinaceum strain isolated from decaying sugarcane straw, Fungal Biology, 123: 330–340, 2019.
doi: 10.1016/j.funbio.2019.01.007

Della-Bianca BE, Gombert AK. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry, Antonie Van Leeuwenhoek, 104: 1083–1095, 2013.
doi: 10.1007/s10482-013-0030-2

Dillon R, Charnley K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota, Research in Microbiology, 153: 503–509, 2002.
doi: 10.1016/s0923-2508(02)01361-x

Feng Y, YU Y, Wang X, Qu Y, Li D, He W, Kim BH. Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure, Bioresource Technology, 102: 742–747, 2011.
doi: 10.1016/j.biortech.2010.08.074

Gannoun H, Bouallagui H, Okbi A, Sayadi S, Hamdi M. Mesophilic and thermophilic anerobiec digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter, Journal of Hazardous Materials, 170: 263–271, 2009.
doi: 10.1016/j.jhazmat.2009.04.111

Gao ZM, Xu X, Ruan LW. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil, Applied Microbiology and Biotechnology, 98: 465-474, 2014.
doi: 10.1007/s00253-013-4857-2

Haq I, Kumar S, Kumari V, Singh SK, Raj A. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent, Journal of Hazardous Materials, 30515: 190–199, 2016.
doi: 10.1016/j.jhazmat.2015.11.046

Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability, Applied Microbiology and Biotechnology, 59: 529–534, 2002.
doi: 10.1007/s00253-002-1026-4

Igoud S, Tou I, Kehal S, Mansouri N, Touzi A. Première approche de la caractérisation du biogaz produit à partir des déjections bovines, Revue des Energies Renouvelables, 5: 123–128, 2002.

Khalil SRA, Abdelhafez AA, Amer EAM. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties, Annals of Agricultural Sciences, 60: 317–324, 2015.
doi: 10.1016/j.aoas.2015.10.005

Liu G, Qu Y. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects, Biotechnology Advances, 37: 519–529, 2019.
doi: 10.1016/j.biotechadv.2018.12.004

Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, Mcmillan JD, Sheehan J, Wyman CE. How biotech can transform biofuels, Nature Biotechnology, 26: 169–172, 2008.
doi: 10.1038/nbt0208-169

Mahjabeen SSZA, Chughtai S, Simonetti B. Renewable energy, institutional stability, environment and economic growth nexus of D-8 countries, Energy Strategy Reviews, 29: 100484, 2020.
doi: 10.1016/j.esr.2020.100484

Makhuvele R, Ncube I, Van Rensburg ELJ, La Grange DC. Isolation of fungi from dung of wild herbivores for application in bioethanol production, Brazilian Journal of Microbiology, 48: 648–655, 2017.
doi: 10.1016/j.bjm.2016.11.013

Nelson K, Muge E, Wamalwa B. Cellulolytic Bacillus species isolated from the gut of the desert locust Schistocerca gregaria, Scientific African, 11: e00665, 2021.
doi: 10.1016/j.sciaf.2020.e00665

Ounnar A, Benhabyles L, Igoud S. Energetic valorization of biomethane produced from cow-dung, Procedia Engineering, 33: 330–334, 2012.
doi: 10.1016/j.proeng.2012.01.1211

Palleroni NJ. The Pseudomonas story, Environmental Microbiology, 12: 1377–1383, 2010.
doi: 10.1111/j.1462-2920.2009.02041.x

Qadir SA, Al-Motairi H, Tahir F, Al-Fagih L. Incentives and strategies for financing the renewable energy transition: A review, Energy Reports, 7: 3590–3606, 2021.
doi: 10.1016/j.egyr.2021.06.041

Qin YM, Tao H, Liu YY, Wang YD, Zhang JR, Tang AX. A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose, Journal of Biotechnology, 168: 24–31, 2013.
doi: 10.1016/j.jbiotec.2013.07.028

Ramos OL, Malcata FX. Food-Grade Enzymes. In: Comprehensive Biotechnology (Third Edition). Murray Moo-Young (ed.). Volume 3, pp 587–603. 2017.
doi: 10.1016/B978-0-12-809633-8.09173-1

Riggio S, Torrijos M, Debord R, Esposito G, Van Hullebusch ED, Steyer JP, Escudié R. Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance, Waste Management, 59: 129–139, 2017.
doi: 10.1016/j.wasman.2016.10.027

Sandgren M, Stahlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes, Progress in Biophysics and Molecular Biology, 89: 246–291, 2005.
doi: 10.1016/j.pbiomolbio.2004.11.002

Sharif-Hossain ABM. Bio-Solvent preparation from apple biomass for pharmaceutical, cosmetic and biomedical industrial application. Global Journal of Biology, Agriculture and Health Sciences, 4: 52–61, 2015.

Tahir PMD, Liew WPP, Lee SY, Ang AF, Halis R. Diversity and characterization of lignocellulolytic fungi isolated from oil palm empty fruit bunch, and identification of influencing factors of natural composting process, Waste Management, 100: 128–137, 2019.
doi: 10.1016/j.wasman.2019.09.002

Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes, Research in Microbiology, 163: 221–232, 2012.
doi: 10.1016/j.resmic.2011.12.001

Tantayotai P, Peerapong P, Chitoka M, Theerawut P, Malinee S. Effect of cellulase-producing microbial consortium on biogas production from lignocellulosic biomass, Energy Procedia, 141: 180–183, 2017.
doi: 10.1016/j.egypro.2017.11.034

Tye YY, Lee KT, Abdullah WNW, Leh CP. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification, Renewable and Sustainable Energy Reviews, 60: 155–172, 2016.
doi: 10.1016/j.rser.2016.01.072

Wang W, Zhang Q, Sun X, Chen D, Insam H, Koide RT, Zhang S. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition, Soil Biology and Biochemistry, 141: 107690, 2020.
doi: 10.1016/j.soilbio.2019.107690

Warren RAJ. Microbial hydrolysis of polysaccharides, Annual Review of Microbiology, 50: 183–212, 1996.
doi: 10.1146/annurev.micro.50.1.183

Wongwilaiwarin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system, Enzyme and Microbial Technology, 47: 283–290, 2010.
doi: 10.1016/j.enzmictec.2010.07.013

Wood IP, Elliston A, Ryden P, Bancroft I, Waldron KW. Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay, Biomass and Bioenergy, 44: 117–121, 2012.
doi: 10.1016/j.biombioe.2012.05.003

Young D, Dollhofer V, Callaghan TM, Reitberger S, Lebuhn M, Benz JP. Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants, Bioresource Technology, 268: 470–479, 2018.
doi: 10.1016/j.biortech.2018.07.103
How to Cite
Ananou, S., Bougarne, Z., Manni, L., & El Ghachtouli, N. (2021). Production of biogas and ethanol from stationery wastes using a microbial consortium isolated from soil as starter culture. Universitas Scientiarum, 26(3), 318–335. https://doi.org/10.11144/Javeriana.SC26-3.poba
Section
Applied Microbiology