Published Aug 10, 2022


Google Scholar
Search GoogleScholar

Armando Reyes

Fabio Calderón



In this paper, our objects of interest are Hopf Galois extensions (e.g., Hopf algebras, Galois field extensions, strongly graded algebras, crossed products, principal bundles, etc.) and families of noncommutative rings (e.g., skew polynomial rings, PBW extensions and skew PBW extensions, etc.) We collect and systematize questions, problems, properties and recent advances in both theories by explicitly developing examples and doing calculations that are usually omitted in the literature. In particular, for Hopf Galois extensions we consider approaches from the point of view of quantum torsors (also known as quantum heaps) and Hopf Galois systems, while for some families of noncommutative rings we present advances in the characterization of ring-theoretic and homological properties. Every developed topic is exemplified with abundant references to classic and current works, so this paper serves as a survey for those interested in either of the two theories. Throughout, interactions between both are presented.


Hopf algebra, Hopf Galois extension, noncommutative ring, Ore extension, skew PBW extension

[1] Chase SU, Harrison D, Rosenberg AL. Galois theory and cohomology of commutative rings. American Mathematical Society. 1965.

[2] Chase SU, Sweedler ME. Hopf algebras and Galois theory. Springer Verlag. 1969.
doi: 10.1007/bfb0101433.

[3] Kreimer HF, Takeuchi M. Hopf algebras and Galois extensions of an algebra. Indiana University Mathematics Journal. 30(5): 675–692, 1981.

[4] Grunspan C. Quantum torsors. Journal of Pure and Applied Algebra. 184(2-3): 229–255,2003.
doi: 10.1016/s0022-4049(03)00066-5.

[5] Škoda Z. Quantum heaps, cops and heapy categories. Mathematical Communications. 12(1): 1–7, 2007.

[6] Bichon J. Hopf-Galois Systems. Journal of Algebra. 264(2): 565–581, 2003.
doi: 10.1016/s0021-8693(03)00140-6.

[7] Ore O. Theory of non-commutative polynomials. Annals of Mathematics. 34(3): 480–508, 1933.
doi: 10.2307/1968173.

[8] Cohn PM. Free rings and their relations. Academic Press. 1985.

[9] McConnell JC, Robson JC. Noncommutative Noetherian rings. American Mathematical Society. 2001.
doi: 10.1090/gsm/030.

[10] Bell AD, Goodearl KR. Uniform rank over differential operator rings and Poincaré-Birkhoff- Witt extensions. Pacific Journal of Mathematics. 131(1): 13–37, 1988.
doi: 10.2140/pjm.1988.131.13.

[11] Fajardo W, Gallego C, Lezama O, Reyes A, Suárez H, Venegas H. Skew PBW extensions. Springer International Publishing. 2020.
doi: 10.1007/978-3-030-53378-6.

[12] Gallego C, Lezama O. Gröbner bases for ideals of -PBW extensions. Communications in Algebra. 39(1): 50–75, 2011.
doi: 10.1080/00927870903431209.

[13] Sridharan R. Filtered algebras and representations of Lie algebras. Transactions of the American Mathematical Society. 100(3): 530–550, 1961.
doi: 10.1090/s0002-9947-1961-0130900-1.

[14] Panov AN. Ore extensions of Hopf algebras. Mathematical Notes. 74(3/4): 401–410, 2003.
doi: 10.1023/a:1026115004357.

[15] Salcedo LA. Hopf algebras and skew PBW extensions. Ciencia en Desarrollo. 10(2): 125– 135, 2019.
doi: 10.19053/01217488.v10.n2.2019.8797.

[16] Grunspan C. Hopf-Galois systems and Kashiwara algebras. Communications in Algebra. 32(9): 3373–3389, 2004.
doi: 10.1081/agb-120038639.

[17] Dăscălescu S, Năstăsescu NC, Raianu S. Hopf algebras: an introduction. Marcel Dekker, Inc. 2001.

[18] Doi Y, Takeuchi M. Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras. Journal of Algebra. 121(2): 488–516, 1989.
doi: 10.1016/0021-8693(89)90079-3.

[19] Kassel C. Quantum groups. Springer New York. 1995.
doi: 10.1007/978-1-4612-0783-2.

[20] Montgomery S. Hopf Algebras and Their Actions on Rings. American Mathematical Society. 1993.
doi: 10.1090/cbms/082.

[21] Montgomery S. Hopf Galois theory: A survey. New topological contexts for Galois theory and algebraic geometry (BIRS 2008). Geometry and Topology Monographs. Mathematical Sciences Publishers: 367–400, 2009.
doi: 10.2140/gtm.2009.16.367.

[22] Schauenburg P. Hopf biGalois extensions. Communications in Algebra. 24(12): 3797–3825, 1996.
doi: 10.1080/00927879608825788.

[23] Schauenburg P. Hopf-Galois and bi-Galois extensions. Galois theory, Hopf algebras, and semiabelian categories. Fields Institute Communications. American Mathematical Society: 469–515, 2004.
doi: 10.1090/fic/043/22.

[24] Sweedler ME. Hopf algebras. W.A. Benjamin. 1969.

[25] Kurakin VL. Hopf algebra dual to a polynomial algebra over a commutative ring. Mathematical Notes. 71(5/6): 617–623, 2002.
doi: 10.1023/a:1015879619768.

[26] Humphreys JE. Introduction to Lie algebras and representation theory. Springer New York. 1972.
doi: 10.1007/978-1-4612-6398-2.

[27] Hall BC. Lie groups, Lie algebras, and representations. Springer International Publishing. 2003.
doi: 10.1007/978-3-319-13467-3.

[28] Helgason S. Differential geometry and symmetric spaces. American Mathematical Society. 2001.
doi: 10.1090/chel/341.

[29] Jacobson N. Lie algebras. Dover Publications, Inc. 1979.

[30] Taft EJ. The order of the antipode of finite-dimensional Hopf algebra. Proceedings of the National Academy of Sciences of the United States of America. 68(11): 2631–2633, 1971.
doi: 10.1073/pnas.68.11.2631.

[31] Kharchenko V. Quantum Lie theory. Springer International Publishing. 2015.
doi: 10.1007/978-3-319-22704-7.

[32] Schauenburg P. A bialgebra that admits a Hopf-Galois extension is a Hopf algebra. Proceedings of the American Mathematical Society. 125(1): 83–85, 1997.
doi: 10.1090/s0002-9939-97-03682-4.

[33] Jacobson N. Basic algebra I. Dover Publications. 2009.

[34] Greither C, Pareigis B. Hopf Galois theory for separable field extensions. Journal of Algebra. 106(1): 239–258, 1987.
doi: 10.1016/0021-8693(87)90029-9.

[35] Pareigis B. Forms of Hopf algebras and Galois theory. Banach Center Publications. 26(1): 75–93, 1990.
doi: 10.4064/-26-1-75-93.

[36] Ulbrich KH. Vollgraduierte Algebren. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 51(1): 136–148, 1981.
doi: 10.1007/bf02941218.

[37] Ulbrich KH. Galoiserweiterungen von nicht-kommutativen ringen. Communications in Algebra. 10(6): 655–672, 1982.
doi: 10.1080/00927878208822741.

[38] Osterburg J, Quinn D. A Noether Skolem theorem for group-graded rings. Journal of Algebra. 113(2): 483–490, 1988.
doi: 10.1016/0021-8693(88)90174-3.

[39] Nǎstǎsescu C, Oystaeyen F. Methods of graded rings. Springer Berlin Heidelberg. 2004.
doi: 10.1007/b94904.

[40] T B, Fairfax SA. Bundles over Quantum Real Weighted Projective Spaces. Axioms. 1(2): 201–225, 2012.
doi: 10.3390/axioms1020201.

[41] Husemoller D. Fibre bundles. Springer New York. 1994.
doi: 10.1007/978-1-4757-2261-1.

[42] Baum PF, Hajac PM, Matthes R, Szymanski W. Noncommutative geometry approach to principal and associated bundles. 2006.

43] Friedrich T. Dirac operators in Riemannian geometry. American Mathematical Society. 2000.
doi: 10.1090/gsm/025.

[44] Olsson M. Algebraic spaces and stacks. American Mathematical Society. 2016.
doi: 10.1090/coll/062.

[45] Domotor Z. Torsor theory of physical quantities and their measurement. Measurement Science Review. 17(4): 152–177, 2017.
doi: 10.1515/msr-2017-0019.

[46] Raposo AP. The algebraic structure of quantity calculus. Measurement Science Review. 18(4): 147–157, 2018.
doi: 10.1515/msr-2017-0021.

[47] Schauenburg P, Schneider HJ. On generalized Hopf galois extensions. Journal of Pure and Applied Algebra. 202(1-3): 168–194, 2005.
doi: 10.1016/j.jpaa.2005.01.005.

[48] Dąbrowski L, Grosse H, Hajac PM. Strong connections and Chern–Connes pairing in the Hopf–Galois theory. Communications in Mathematical Physics. 220(2): 301–331, 2001.
doi: 10.1007/s002200100433.

[49] Brzeziński T, Hajac PM. The Chern-Galois Character. Comptes Rendus Mathematique. 338(2): 113–116, 2004.
doi: 10.1016/j.crma.2003.11.009.

[50] Masoka A. Cleft extensions for a Hopf algebra generated by a nearly primitive element. Communications in Algebra. 22(11): 4537–4559, 1994.
doi: 10.1080/00927879408825086.

[51] Durdević M. Geometry of quantum principal bundles I. Communications in Mathematical Physics. 175(3): 457–520, 1996.
doi: 10.1007/bf02099507.

[52] Schauenburg P. Galois objects over generalized Drinfeld doubles, with an application to uq.sl2/. Journal of Algebra. 217(2): 584–598, 1999.
doi: 10.1006/jabr.1998.7814.

[53] Günther R. Crossed products for pointed Hopf algebras. Communications in Algebra. 27(9): 4389–4410, 1999.
doi: 10.1080/00927879908826704.

[54] Skryabin S. Hopf Galois extensions, triangular structures, and Frobenius Lie algebras in prime characteristic. Journal of Algebra. 277(1): 96–128, 2004.
doi: 10.1016/j.jalgebra.2003.09.052.

[55] Yu X. Hopf-Galois objects of Calabi-Yau Hopf algebras. Journal of Algebra and its Applications. 15(10): 165–194, 2016.
doi: 10.1142/s0219498816501942.

[56] Chen Y, Zhang L. Hopf-Galois extensions for monoidal Hom-Hopf algebras. Colloquium Mathematicum. 143: 1–21, 2016.
doi: 10.4064/cm6615-12-2015.

[57] Huang H, Nguyen VC, Ure C, Vashaw KB, Veerapen P, Wang X. Twisting of graded quantum groups and solutions to the quantum Yang-Baxter equation. 2021.

[58] Schneider H. Representation theory of Hopf Galois extensions. Israel Journal of Mathematics. 72(1-2): 196–231, 1990.
doi: 10.1007/bf02764620.

[59] Cohen M, Fischman D, Montgomery S. Hopf Galois extensions, smash products, and Morita equivalence. Journal of Algebra. 133(2): 351–372, 1990.
doi: 10.1016/0021-8693(90)90274-r.

[60] Doi Y, Takeuchi M. Cleft comodule algebras for a bialgebra. Communications in Algebra. 14(5): 801–817, 1986.
doi: 10.1080/00927878608823337.

[61] Radford DE. The order of the antipode of a finite dimensional Hopf algebra is finite. American Journal of Mathematics. 98(2): 333–355, 1976.
doi: 10.2307/2373888.

[62] Schneider HJ. Principal homogeneous spaces for arbitrary Hopf algebras. Israel Journal of Mathematics. 72(1-2): 167–195, 1990.
doi: 10.1007/bf02764619.

[63] Doi Y. Hopf extensions of algebras and Maschke type theorems. Israel Journal of Mathematics. 72(1-2): 99–108, 1990.
doi: 10.1007/bf02764613.

[64] Oystaeyen F van, Zhang Y. Galois-type correspondences for Hopf Galois extensions. KTheory. 8(3): 257–269, 1994.
doi: 10.1007/bf00960864.

[65] Schauenburg P. Galois correspondences for Hopf biGalois extensions. Journal of Algebra. 201(1): 53–70, 1998.
doi: 10.1006/jabr.1997.7237.

[66] Marciniak D, Szamotulski M. Galois Theory of Hopf Galois extensions. 2009.

[67] Caenepeel S, Wang D, Wang Y. Twistings, crossed coproducts, and Hopf-Galois coextensions. International Journal of Mathematics and Mathematical Sciences. 2003(69): 4325–4345, 2003.
doi: 10.1155/s0161171203212400.

[68] Dăscălescu S, Militaru G, Raianu Ş. Crossed coproducts and cleft coextensions. Communications in Algebra. 24(4): 1229–1243, 1996.
doi: 10.1080/00927879608825635.

[69] Hassanzadeh M. Hopf Galois (co)extensions in noncommutative geometry. New Zealand Journal of Mathematics. 42: 195–215, 2012.

[70] Ştefan D. Hochschild cohomology on Hopf Galois extensions. Journal of Pure and Applied Algebra. 103(2): 221–233, 1995.
doi: 10.1016/0022-4049(95)00101-2.

[71] Makhlouf A, Ştefan D. Coactions on Hochschild homology of Hopf-Galois extensions and their coinvariants. Journal of Pure and Applied Algebra. 214(9): 1654–1677, 2010.
doi: 10.1016/j.jpaa.2009.12.010.

[72] Rumynin D. Hopf-Galois Extensions with central invariants and their geometric properties. Algebras and Representation Theory. 1(4): 353–381, 1998.
doi: 10.1023/a:1009944607078.

[73] Montgomery S, Schneider HJ. Prime ideals in Hopf Galois extensions. Israel Journal of Mathematics. 112(1): 187–235, 1999.
doi: 10.1007/bf02773482.

[74] Jara P, Ştefan D. Hopf-Cyclic homology and relative cyclic homology of Hopf-Galois extensions. Proceedings of the London Mathematical Society. 93(1): 138–174, 2006.
doi: 10.1017/s0024611506015772.

[75] Hassanzadeh M, Rangipour B. Equivariant Hopf Galois extensions and Hopf cyclic cohomology. Journal of Noncommutative Geometry. 7(1): 105–133, 2013.
doi: 10.4171/jncg/110.

[76] Ardakov K, Wadsley SJ. On the Cartan map for crossed products and Hopf-Galois extensions. Algebras and Representation Theory. 13(1): 33–41, 2010.
doi: 10.1007/s10468-008-9095-4.

[77] Hess K. Homotopic Hopf Galois extensions: Foundations and examples. New topological contexts for Galois theory and algebraic geometry (BIRS 2008). Geometry and Topology Monographs. Mathematical Sciences Publishers: 79–132, 2009.
doi: 10.2140/gtm.2009.16.79.

[78] Kassel C, Schneider HJ. Homotopy theory of Hopf Galois extensions. Annales de l’Institut Fourier. 55(7): 2521–2550, 2005.
doi: 10.5802/aif.2169.

[79] Zhang S, Zhang YZ. Hopf Galois extension in braided tensor categories. 2003.

[80] Andruskiewitsch N, Schneider HJ. Pointed Hopf Algebras. New Directions in Hopf Algebras. Mathematical Sciences Research Institute Publications. Cambridge University Press: 1–68, 2002.

[81] Böhm G. Galois Theory for Hopf Algebroids. Annali dell’Università di Ferrara. 51(1): 233– 262, 2005.
doi: 10.1007/bf02824833.

[82] Caenepeel S, Groot ED. Galois theory for weak Hopf algebras. Romanian Journal of Pure and Applied Mathematics. 52: 51–76, 2007.

[83] Caenepeel S, Crivei S, Marcus A, Takeuchi M. Morita equivalences induced by bimodules over Hopf-Galois extensions. Journal of Algebra. 314(1): 267–302, 2007.
doi: 10.1016/j.jalgebra.2007.02.033.

[84] Caenepeel S, Marcus A. Hopf-Galois extensions and an exact sequence forH-Picard groups. Journal of Algebra. 323(3): 622–657, 2010.
doi: 10.1016/j.jalgebra.2009.10.010.

[85] Aljadeff E, Kassel C. Polynomial identities and noncommutative versal torsors. Advances in Mathematics. 218(5): 1453–1495, 2008.
doi: 10.1016/j.aim.2008.03.014.

[86] Kassel C. Generic Hopf Galois extensions. Quantum Groups and Noncommutative Spaces. Perspectives on Quantum Geometry. Vieweg+Teubner Verlag: 104–120, 2011.
doi: 10.1007/978-3-8348-9831-9_6.

[87] He J, Zhang Y. Cohen-Macaulay invariant subalgebras of Hopf dense Galois extensions. 2017.

[88] Batista E, Caenepeel S, Vercruysse J. Hopf categories. Algebras and Representation Theory. 19(5): 1173–1216, 2016.
doi: 10.1007/s10468-016-9615-6.

[89] Caenepeel S, Fieremans T. Descent and Galois Theory for Hopf Categories. Journal of Algebra and its Applications. 17(07): 1850120, 2018.
doi: 10.1142/s0219498818501207.

[90] Bulacu D, Torrecillas B. On Frobenius and separable Galois cowreaths. Mathematische Zeitschrift. 297(1-2): 25–57, 2020.
doi: 10.1007/s00209-020-02495-8.

[91] Zhu R. A note on the discriminant of reflection Hopf algebras. 2021.

[92] Lezama O, Wang YH, Zhang JJ. Zariski cancellation problem for non-domain noncommutative algebras. Mathematische Zeitschrift. 292(3-4): 1269–1290, 2018.
doi: 10.1007/s00209-018-2153-7.

[93] Castro F, Freitas D, Paques A, Quadros G, Tamusiunas T. Partial Hopf-Galois theory. 2021.

[94] Bénabou J, Roubaud J. Monades et descente. Comptes Rendus de l’Académie des Sciences. 270: 96–98, 1970.

[95] Schauenburg P. Quantum torsors with fewer axioms. 2003.

[96] Schauenburg P. Quantum torsors and Hopf-Galois objects. 2002.

[97] Roman S. Field theory. Springer New York. 2006.
doi: 10.1007/0-387-27678-5.

[98] Schauenburg P. Tannaka Duality for Arbitrary Hopf Algebras. Reinhard Fischer Verlag. 1992.

[99] Doi Y. Braided bialgebras and quadratic blalgebras. Communications in Algebra. 21(5): 1731– 1749, 1993.
doi: 10.1080/00927879308824649.

[100] Dubois-Violette M, Launer G. The quantum group of a non-degenerate bilinear form. Physics Letters B. 245(2): 175–177, 1990.
doi: 10.1016/0370-2693(90)90129-t.

[101] Bichon J. The Representation Category of the Quantum Group of a Non-degenerate Bilinear Form. Communications in Algebra. 31(10): 4831–4851, 2003.
doi: 10.1081/agb-120023135.

[102] Takeuchi M. Free Hopf algebras generated by coalgebras. Journal of the Mathematical Society of Japan. 23(4): 561–582, 1971.
doi: 10.2969/jmsj/02340561.

[103] Daele AV, Wang S. Universal quantum groups. International Journal of Mathematics. 07(02): 255–263, 1996.
doi: 10.1142/S0129167X96000153.

[104] Goodearl KR, Warfield RBJ. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. 2004.
doi: 10.1017/cbo9780511841699.

[105] Kauers M, Jaroschek M, Johansson F. Ore Polynomials in Sage. Computer algebra and polynomials. Lecture Notes in Computer Science. Springer International Publishing: 105–125, 2015.
doi: 10.1007/978-3-319-15081-9_6.

[106] Chyzak F, Quadrat A, Robertz D. “OreModules: A symbolic package for the study of multidimensional linear systems.” Applications of time delay systems. Volume 352. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg: 233–264, 2007.
doi: 10.1007/978-3-540-49556-7_15.

[107] Coutinho SC. A Primer of Algebraic D-Modules. 33. Cambridge University Press. 2003.
doi: 10.1017/cbo9780511623653.

[108] Artamonov VA. Derivations of skew PBW-extensions. Communications in Mathematical Statistics. 3(4): 449–457, 2015.
doi: 10.1007/s40304-015-0067-9.

[109] Hashemi E, Khalilnezhad K, Alhevaz A. .†; /-compatible skew PBW extension ring. Kyungpook Mathematical Journal. 57(3): 401–417, 2017.
doi: 10.5666/KMJ.2017.57.3.401.

[110] Hashemi E, Khalilnezhad K, Alhevaz A. Extensions of rings over 2-primal rings. Matematiche (Catania). 74(1): 141–162, 2019.
doi: 10.4418/2019.74.1.10.

[111] Hashemi E, Khalilnezhad K, Ghadiri M. Baer and quasi-Baer properties of skew PBW extensions. Journal of Algebraic Systems. 7(1): 1–24, 2019.
doi: 10.22044/jas.2018.6762.1333.

[112] Lezama O. Computation of point modules of finitely semi-graded rings. Communications in Algebra. 48(2): 866–878, 2020.
doi: 10.1080/00927872.2019.1666404.

[113] Lezama O, Gallego C. d-Hermite rings and skew PBW extensions. São Paulo Journal of Mathematical Sciences. 10(1): 60–72, 2016.
doi: 10.1007/s40863-015-0010-8.

[114] Lezama O, Gómez J. Koszulity and Point Modules of Finitely Semi-Graded Rings and Algebras. Symmetry. 11(7): 881, 2019.
doi: 10.3390/sym11070881.

[115] Lezama O, Reyes A. Some Homological Properties of Skew PBW Extensions. Communications in Algebra. 42(3): 1200–1230, 2013.
doi: 10.1080/00927872.2012.735304.

[116] Lezama O, Venegas H. Center of skew PBW extensions. International Journal of Algebra and Computation. 30(08): 1625–1650, 2020.
doi: 10.1142/s0218196720500575.

[117] Suárez H. Koszulity for graded skew PBW extensions. Communications in Algebra. 45(10): 4569–4580, 2016.
doi: 10.1080/00927872.2016.1272694.

[118] Tumwesigye A, Richter J, S. Silvestrov S. Centralizers in PBW extensions. Algebraic Structures and Applications. Springer International Publishing: 469–490, 2020.
doi: 10.1007/978-3-030-41850-2_20.

[119] Zambrano BA. Poisson brackets on some skew PBW extensions. Algebra and Discrete Mathematics. 29(2): 277–302, 2020.
doi: 10.12958/adm1037.

[120] Bergman GM. The Diamond Lemma for Ring Theory. Advances in Mathematics. 29(2): 178–218, 1978.
doi: 10.1016/0001-8708(78)90010-5.

[121] Acosta JP, Lezama O. Universal property of skew PBW extensions. Algebra and Discrete Mathematics. 20(1): 1–12, 2015.

[122] Kuryshkin MV. Opérateurs quantiques généralisés de création et d’annihilation. Annales de la Fondation Louis de Broglie. 5: 111–125, 1980.

[123] Jannussis A, Bbodimas G, Soublas D, Zisis V. Remarks on the q-quantization. Lettere al Nuovo Cimento. 30(4): 123–127, 1981.
doi: 10.1007/bf02817324.

[124] Jategaonkar VA. A multiplicative analog of the Weyl algebra. Communications in Algebra. 12(14): 1669–1688, 1984.
doi: 10.1080/00927878408823074.

[125] Manin YI. Quantum groups and noncommutative geometry. Springer International Publishing. 2018.
doi: 10.1007/978-3-319-97987-8.

[126] Smith SP. “Quantum groups: an introduction and survey for ring theorists.” Noncommutative rings. Mathematical Sciences Research Institute Publications 24. Springer New York: 131–178, 1992.
doi: 10.1007/978-1-4613-9736-6_6.

[127] Berger R. The Quantum Poincaré-Birkhoff-Witt Theorem. Communications in Mathematical Physics. 143(2): 215–234, 1992.
doi: 10.1007/bf02099007.

[128] Wallisser R. Rationale Approximation des q-Analogues der Exponentialfunktion und Irrationalittsaussagen for diese Funktion. Archiv der Mathematik. 44: 59–64, 1985.

[129] Jordan DA. Height one prime ideals of certain iterated skew polynomial rings. Mathematical Proceedings of the Cambridge Philosophical Society. 114(3): 407–425, 1993.
doi: 10.1017/s0305004100071693.

[130] Jordan DA. Finite-dimensional simple modules over certain iterated skew polynomial rings. Journal of Pure and Applied Algebra. 98(1): 45–55, 1995.
doi: 10.1016/0022-4049(95)90017-9.

[131] Rosenberg AL. Noncommutative algebraic geometry and representations of quantized algebras. Springer Netherlands. 1995.
doi: 10.1007/978-94-015-8430-2.

[132] Gavrilik AM, Klimyk AU. q-deformed orthogonal and pseudo-orthogonal algebras and their representations. Letters in Mathematical Physics. 21(3): 215–220, 1991.
doi: 10.1007/bf00420371.

[133] Havlíček M, Klimyk AU, Pošta S. Central Elements of the Algebras U0 q.som/ and Uq.isom/. Czech Journal of Physics. 50(1): 79–84, 2000.
doi: 10.1023/a:1022825031633.

[134] Hayashi T. q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Communications in Mathematical Physics. 127(1): 129– 144, 1990.
doi: 10.1007/bf02096497.

[135] Isaev AP, Pyatov PN, Rittenberg V. Diffusion algebras. Journal of Physics A. 34(29): 5815, 2001.
doi: 10.1088/0305-4470/34/29/306.

[136] Reyes A, Suárez H. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. Journal of Algebra and its Applications. 19(12): 2050225, 2020.
doi: 10.1142/s0219498820502254.

[137] Kandri-Rody A, Weispfenning V. Noncommutative Gröbner base in algebras of solvable type. Journal of Symbolic Computation. 9(1): 1–26, 1990.
doi: 10.1016/S0747-7171(08)80003-X.

[138] Bueso JL, Torrecillas JG, Verschoren A. Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Springer. 2003.

[139] Lezama O, Latorre E. Non-commutative algebraic geometry of semi-graded rings. International Journal of Algebra and Computation. 27(04): 361–389, 2017.
doi: 10.1142/s0218196717500199.

[140] Levandovskyy V. “Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation.” PhD thesis. Universitat Kaiserslautern. 2005.

[141] Louzari M, Reyes A. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Revista Colombiana de Matemáticas. 54(1): 39–63, 2020.
doi: 10.15446/recolma.v54n1.89788.

[142] Niño A, Ramírez MC, Reyes A. Associated prime ideals over skew PBW extensions. Communications in Algebra. 48(12): 5038–5055, 2020.
doi: 10.1080/00927872.2020.1778012.

[143] Reyes A. Armendariz modules over skew PBW extensions. Communications in Algebra. 47(3): 1248–1270, 2019.
doi: 10.1080/00927872.2018.1503281.

[144] Reyes A, Rodríguez C. The McCoy condition on skew Poincaré-Birkhoff-Witt extensions. Communications in Mathematical Statistics. 9(1): 1–21, 2021.
doi: 10.1007/s40304-019-00184-5.

[145] Woronowicz SL. Twisted SU.2/ group. An example of a noncommutative differential calculus. Publications of the Research Institute for Mathematical Sciences. 23(1): 117–181, 1987.
doi: 10.2977/prims/1195176848.

[146] Reyes A, Suárez H. PBW bases for some 3-dimensional skew polynomial algebras. Far East Journal of Mathematical Sciences. 101(6): 1207–1228, 2017.
doi: 10.17654/ms101061207.

[147] Hinchcliffe O. “Diffusion algebras.” PhD thesis. University of Sheffield. 2005.

[148] Pyatov PN, Twarock R. Construction of diffusion algebras. Journal of Mathematical Physics. 43(6): 3268–3279, 2002.
doi: 10.1063/1.1473220.

[149] Redman I. “The Non-commutative Algebraic Geometry of some Skew Polynomial algebras.” PhD thesis. University of Wisconsin. 1996.

[150] Redman I. The homogenization of the three dimensional skew polynomial algebras of type I. Communications in Algebra. 27(11): 5587–5602, 1999.
doi: 10.1080/00927879908826775.

[151] Loday JL. Cyclic homology. Springer-Verlag, Berlin. 1998.
doi: 10.1007/978-3-662-11389-9.

[152] Bell AD. Comodule algebras and Galois extensions relative to polynomial algebras, free algebras, and enveloping algebras. Communications in Algebra. 28(1): 337–362, 2000.
doi: 10.1080/00927870008841076.

[153] Nuss P. L’homologie cyclique des algèbres enveloppantes des algèbres de lie de dimension trois. Journal of Pure and Applied Algebra. 73(1): 39–71, 1991.
doi: 10.1016/0022-4049(91)90105-b.

[154] Brown KA, O’Hagan S, Zhang JJ, Zhuang G. Connected Hopf algebras and iterated Ore extensions. Journal of Pure and Applied Algebra. 219(6): 2405–2433, 2015.
doi: 10.1016/j.jpaa.2014.09.007.

[155] Huang H. Hopf Ore extensions. Algebras and Representation Theory. 23(4): 1477–1486, 2019.
doi: 10.1007/s10468-019-09901-8.

[156] Roman S. Advanced linear algebra. Springer New York. 2008.
doi: 10.1007/978-0-387-72831-5.

[157] Kashiwara M. On crystal bases of the Q-analogue of universal enveloping algebras. Duke Mathematical Journal. 63(2): 465–516, 1991.
doi: 10.1215/s0012-7094-91-06321-0.

[158] Hong J, Kang S. Introduction to Quantum Groups and Crystal Bases. American Mathematical Society. 2002.
doi: 10.1090/gsm/042.

[159] Kac VG. Infinite-dimensional Lie algebras. Cambridge University Press. 1990.
doi: 10.1017/cbo9780511626234.
How to Cite
Reyes, A., & Calderón, F. (2022). Some interactions between Hopf Galois extensions and noncommutative rings. Universitas Scientiarum, 27(2), 58–161.
Mathematics and Statistics