Abstract
The Chromolaena genus is composed by about 170 plant species widely distributed in tropical areas. Several kinds of secondary metabolites and different biological activities have been described for species belonging to Chromolaena. This work described, for the first time, the phytochemical analysis of different polarity leaf and flower extracts of the Colombian species Chromolaena scabra (LF) R. King & H. Rob. Conducted assays resulted in the purification and identification of fatty acids derivatives, steroids, a diterpene, and flavonoid metabolites. The preliminary phytochemical analysis revealed the presence of the main groups of secondary metabolites: steroids, triterpenes, carotenoids, alkaloids, tannins, and flavonoids. In parallel, the antifungal activity of these C. scabra leaf and flower extracts against the fungus Fusarium oxysporum f. sp. lycopersici, was determined.
Dean R, Kan J, Pretorius Z, Hammond‐Kosack, K, Pietro A, Spanu P, Rudd J, Dickman M, Kahmann R, Ellis J, Foster G. The Top 10 fungal pathogens in molecular plant pathology, Molecular Plant Pathology, 13(4): 414–430, 2012.
doi: 10.1111/j.1364-3703.2011.00783.x
Rana A, Sahgal M, Johri B. Fusarium oxysporum: genomics, diversity and plant-host interaction. In: Satyanarayana T., Deshmukh S., Johri B. (eds) Developments in Fungal Biology and Applied Mycology. Singapore (Singapore): Springer, 2017, p. 159–199
doi: 10.1007/978-981-10-4768-8 10
Renu J. A review of Fusarium oxysporum on its plant interaction and industrial use, Journal of Medicinal Plants Studies, 6(3): 112–115, 2018.
doi: 10.22271/plants.2018.v6.i3b.07
Michel J, Nur Zahirah A, Khairana H. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases, Frontiers in pharmacology, 11: 852–878, 2020.
doi: doi.org/10.3389/fphar.2020.00852
King R.M, Robinson,H. Studies in the Eupatorieae (Compositae). The genus Chromolaena, Phytologia, 20(3): 196–209, 1970.
doi: doi.org/10.5962/bhl.part.7118
Beest M. Plant-soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata, Journal of Ecology, 97: 1281–1290, 2009.
doi: doi.org/10.1111/j.1365-2745.2009.01574.x
Rodríguez B, Díaz S, Parra C. Chromolaena (Asteraceae: Eupatorieae). Flora de Colombia No. 31. Bogotá. Ed Universidad Nacional de Colombia. 2014.
de Oliveira A, de Oliveira G, Carazza F, BrazFilho R, Moreira T, Bauer L, Silva B, Siqueira N. Laevigatin, a sesquiterpenoid furan from Eupatorium laevigatum, Tetrahedron Letters, 19(30): 2653–2654, 1978.
doi.org/10.1016/S0040-4039(01)91566-7
Bohlmann F, Sing P, Jakupovic J, King R, Robinson H. Three cadinene derivatives and a prostaglandin-like acid form Chromolaena species, Phytochemistry, 21(2): 371–374, 1982.
doi: doi.org/10.1016/s0031-9422(00)95269-5
De Gutierrez A, Catalan C, Diaz J, Herz W. Sesquiterpene lactones, a labdane and other constituents of Urolepis hecatantha and Chromolaena arnottiana, Phytochemistry, 39(4): 795–800, 1995.
doi: 10.1016/0031-9422(95)00091-k
Castillo G, Jakupovic J, Bohlmann F, King R, Robinson H. Entclerodane derivatives from Chromolaena connivens, Phytochemistry, 28(2): 641–642, 1989.
doi: doi.org/10.1016/0031-9422(89)80072-x
Omokhua A, McGaw L, Chukwujekwu J, Finnie J, Van Staden J. A comparison of the antimicrobial activity and in vitro toxicity of a medicinally useful biotype of invasive Chromolaena odorata (Asteraceae) with a biotype not used in traditional medicine, South
African Journal of Botany, 108: 200–208, 2017.
doi: 10.1016/j.sajb.2016.10.017
Valarezo E, Arias A, Cartuche L, Meneses M, Ojeda-Riascos S, Morocho V. Biological Activity and Chemical Composition of the Essential Oil from Chromolaena laevigata (Lam.) R.M. King & H. Rob. (Asteraceae) from Loja, Ecuador, Journal of Essential Oil Bearing
Plants, 19(2): 384–390, 2016.
doi.org/10.1080/0972060x.2014.935042
Clavin M, Lorenzen K, Mayer A, Martino V, Anke T. Biological activities in medicinal species of Eupatorium, ISHS Acta Horticulturae, 501: 277–282, 1999.
doi.org/10.17660/actahortic.1999.501.44
Giraldo P, Andrade A, Pombo L, Arias J, Rodríguez O. Anti-oxidant activity of leaves and flowers extracts in Chromolaena scabra plant species (L. F.) R.M. King & H. Rob, Pharmacology online, 2: 83–91, 2020.
Giraldo P, Andrade A, Pombo L, Arias J, Rodríguez O. Determination Of Antimicrobial Activity In Leaves And Flowers Of Chromolaena scabra (L. F.) R.M. King & H. Rob, Asian Journal of Pharmaceutical and Clinical Research, 13(9): 53–56, 2020.
doi: doi.org/10.22159/ajpcr.2020.v13i9.38835
Parra J, Delgado W, Cuca L. Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae), Phytochemistry letters, 4(3): 280–282, 2011.
doi: 10.1016/j.phytol.2011.04.015
Parra J, Cuca L, Gonzalez-Coloma A. Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense, Natural Products Research, 35(16): 2763–2771, 2021.
doi: 10.1080/14786419.2019.1662010
Cosoveanu A, Silva E, Gimenez M, Nuñez T, Gonzalez-Coloma A, Frias V, Cabrera R. Artemisia thuscula cav.: antibacterial, antifungal activity of the plant extracts and associated endophytes, Journal of Horticulture, Forestry and Biotechnology.,16(1): 87–90, 2012.
Olszewska M, Wolbis M. Flavonoids from the flowers of Prunus spinose, Acta poloniae pharmaceutica, 58(5): 367–372, 2001.
pubmed.ncbi.nlm.nih.gov/11876444
Ibrahim L, El-Senousy W, Hawas U. W. NMR spectral analysis of flavonoids from Chrysanthemum coronarium, Chemistry of Natural Compounds, 43(6): 659–662, 2007.
doi: 10.1007/s10600-007-0222-y
Monteiro de Oliveira J, Irineu Bernardi D, Bento R, da Silva A, Pilau E, Barroto M, Sarragioto M, Baldoqui D. Chemotaxonomic value of flavonoids in Chromolaena congesta (Asteraceae), Biochemical Systematics and Ecology, 70: 7–13, 2017.
doi: doi.org/10.1016/j.bse.2016.10.013
Kiong Ling S, Pisar M, Man S. Platelet-Activating Factor (PAF) Receptor Binding Antagonist Activity of the Methanol Extracts and Isolated Flavonoids from Chromolaena odorata (L.) KING and ROBINSON, Biological and Pharmaceutical Bulletin, 30(6): 1150–1152, 2007.
doi: 10.1248/bpb.30.1150
Kumkarnjana S, Nimmannit U, Koobkokkruad T, Pattamadilok C, Suttisri R, Vardhanabhuti N. Anti-adipogenic effect of flavonoids from Chromolaena odorata leaves in 3T3- L1 adipocytes, Journal of Integrative Medicine, 16(6): 427–434, 2018.
doi: doi.org/10.1016/j.joim.2018.10.002
Diaz L, Muñoz D. Prieto R. Cuervo S. Gonzalez D. Guzman J. Bhakta S. Antioxidant, antitubercular and cytotoxic activities of Piper imperial, Molecules, 17(4): 4142–4157, 2012.
doi: 10.3390/molecules17044142
David A, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid, Pharmacognosy reviews, 10(20): 84–89, 2016.
doi: 10.4103/0973-7847.194044
Nijveldt J, van Nood E, van Hoorn D, Boelens P, van Norren K, van Leeuwen P. Flavonoids: a review of probable mechanisms of action and potential applications, American Journal of Clinical Nutrition, 74(4): 418–425, 2001.
doi: 10.1093/ajcn/74.4.418 PMID: 11566638
Cáceres Rueda de León I, Colorado R, Salas E, Muñoz L, Hernández L. Actividad Antifúngica in vitro de Extractos Acuosos de Especias contra Fusarium oxysporum, Alternaria alternata, Geotrichum candidum, Trichoderma spp., Penicillum digitatum y Aspergillus
niger, Revista mexicana de fitopatología, 31(2): 105–112, 2013.
doi: doi.org/10.18781/r.mex.fit.1703-3
Weidenbörner M, Hindorf H, Jha C, Tsotsonos P. Antifungal activity of flavonoids against storage fungi of the gens Aspergillus, Phytochemistry, 29(4): 1103–1105, 1990.
doi: 10.1016/0031-9422(90)85412-9

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Universitas Scientiarum