A scoping and critical review of properties, standards, and regulations of oxo-biodegradable plastics
##plugins.themes.bootstrap3.article.details##
Based on recent scientific-technical developments referring to the transformation and biodegradation mechanisms of plastic compounds, progress has been made both in the conceptualization of relevant definitions and in the development of technical standards that allow determining, in a more precise and reproducible way, the ratio of biodegradability of a determined material. From these advances, they have developed, furthermore, the so-called oxo-biodegradable plastics, in which pro-oxidant additives are added to the raw polymer in such a way that allow a optimal abiotic transformation process (photo/thermo oxidation), producing the fragmentation of the material under suitable conditions for its simultaneous or successive biotic degradation (enzymatic oxidation). Although, currently, oxobiodegradable plastics are widely used in different applications such as, for example, in agriculture and
single-use plastics, until very recently a technical standard was developed that allows determining the relative degradation ratio of different types of plastics under abiotic and biotic conditions. This process implies that for producers to be able to use specific terms of bio-degradation and oxo-biodegradation for advertising purposes that claim to offer an environmentally friendly product, the relevant entities must carry out metrological tests in light of the new definitions and technical standards. Furthermore, a large amount of specialized literature has been generated in which the bio-degradation ratio of oxobiodegradable plastics is determined in very specific environments and conditions. This review gives a detailed account of the different definitions and scientific concepts involved in oxo-/bio- degradation and shows how these concepts have evolved over time. It also shows the evolution of the technical standards, which, in general, are adapted to the new scientific and technical developments in the field of plastics. Finally, a detailed analysis of results reported in the scientific literature shows the dependence of oxo-biodegradation on different parameters (UV radiation, temperature, exposure time, type of enzymes), specific environments (soil, composting, waste, recycling, etc.), different types of plastics (LDPE, HDPE, LLDPE, pro-oxidant additives) and, finally, on different analytical techniques used (FTIR, DSC, TGA, SEM, tensile test).
[2] Stahel WR. Circular economy, Nature, 531: 435-438, 2016.
[3] Tabone MD, Cregg JJ, Beckman EJ & Landis AE. Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers, Environmental Science Technology, 44(21):8264–8269, 2010.
doi: 10.1021/es101640n
[4] Harper CA & Petrie EM, Plastics Materials and Processes: A Concise Encyclopedia, ed., John Wiley & Sons, Inc. 2003, 974 p.p.
[5] Ferry JD, Viscoelastic properties of polymers, 3th ed., John Wiley & Sons, New York, USA 1980, 672 p.p.
[6] Feldman D. Polymer History, Designed Monomers and Polymers, 11(1): 1–15, 2012.
doi: 10.1163/156855508x292383
[7] Silviya EK, Varma S, Unnikrishnan G & Thomas S. Compounding and mixing of polymers, in Thomas & Weimin, (Eds). Advances in Polymer Processing. Elsevier, 2009, p. 71–105.
[8] Bower DI, An Introduction to Polymer Physics, ed., Cambridge University Press, New York 2000.
[9] Al-Ali AlMa’adeed M, Krupa I & Editors, Polyolefin Compounds and Materials, ed., Springer International Publishing, Switzerland 2016, 353p.
[10] Hogan JP & Banks RL. History of Crystalline Polypropylene, in Seymour & Cheng, (Eds). History of Polyolefins, Chemists and Chemistry. Springer, Dordrecht, 1986, p. 103–115.
[11] Rhodes CJ. Solving the plastic problem: From cradle to grave, to reincarnation, Science Progress, 102(3): 218–248, 2019.
doi: 10.1177/0036850419867204
[12] Bolgar M, Hubball J, Groeger J & Meronek S, Handbook for the Chemical Analysis of Plastic and Polymer Additives ed., CRC Press, U.S.A 2007,
[13] Turner A & Filella M. Hazardous metal additives in plastics and their environmental impacts, Environment International, 156: 106622, 2021.
doi: 10.1016/j.envint.2021.106622
[14] Munier B & Bendell LI. Macro and microplastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems, Plos One, 13(2): e0191759, 2018.
doi: 10.1371/journal.pone.0191759
[15] Storz H & Vorlop K-D. Bio-based plastics: status, challenges and trends, Applied Agriculture Forestry Research, 4 (63): 321-332, 2013.
doi: 10.3220/LBF_2013_321-332
[16] St. Pierre T & Chiellini E. Biodegradability of Synthetic Polymers Used for Medical and Pharmaceutical Applications: Part 1— Principles of Hydrolysis Mechanisms, Journal of Bioactive and Compatible Polymers, 1 (4): 467-497, 1986.
doi: 10.1177/088391158600100405
[17] Law KL & Narayan R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life, Nature Reviews Materials, 7: 104–116, 2022.
doi: 10.1038/s41578-021-00382-0
[18] Archer RD, Inorganic and Organometallic Polymers, ed., Wiley-VCH, USA. 2001.
[19] Smith M, Love DC, Rochman CM & Neff RA. Microplastics in Seafood and the Implications for Human Health, Current Environmental Health Reports, 5(3): 375–386, 2018.
doi: 10.1007/s40572-018-0206-z
[20] Abdullah A & Al-Helal IM. Mechanical deterioration of polyethene greenhouses covering under arid conditions, Journal of Materials Processing Technology, 209(1): 63–69, 2009.
doi: 10.1016/j.jmatprotec.2008.01.052
[21] Rial-Otero R, Galesio M, Capelo J-L & Simal-Gándara J. A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS, Chromatographia, 70(3-4): 339–348, 2009.
doi: 10.1365/s10337-009-1254-1
[22] Neilson AH & Allard A-S, Environmental Degradation and Transformation of Organic Chemicals, ed., CRC Press, Boca Raton, USA 2007, 736p.
[23] Bastioli Ce, Handbook of Biodegradable Polymers, 2nd Edition ed., Smithers Rapra Technology 2014.
[24] Feuilloley P, César G, Benguigui L, Grohens Y, Pillin I, Bewa H, Lefaux S & Jamal M. Degradation of Polyethylene Designed for Agricultural Purposes, Journal of Polymers and the Environment, 13(4): 349-355, 2005.
doi: 10.1007/s10924-005-5529-9
[25] Ashter SA, Introduction to Bioplastics Engineering, ed., Elsevier Science 2016.
[26] Rivera-Hoyos CM, Morales-Álvarez ED, Abelló-Esparza J, Buitrago-Pérez DF, Martínez- Aldana N, Salcedo-Reyes JC, Poutou-Piñales RA & Pedroza-Rodríguez AM. Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO2/visible photocatalysis, Scientific Report, 8: 3503, 2018.
doi: 10.1038/s41598-018-21597-2
[27] Gómez-Méndez LD, Jiménez-Borrego LC, Pérez-Flórez A, Poutou-Piñales RA, Pedroza-Rodríguez AM, Salcedo-Reyes JC, Vargas A & Bogoya JM. LDPE transformation by exposure to sequential low-pressure plasma and TiO2/UV photocatalysis Molecules, 26 (9):2513, 2021.
doi: 10.3390/molecules26092513
[28] Crompton TR, Thermo-oxidative degradation of polymers, ed., iSmithers – A Smithers Group Company, Beaumaris, UK 2010,
[29] Scott G. The philosophy and practice of degradable plastics, in Shomura & Godfrey, (Eds). Proceedings of the Second International Conference on Marine Debris, 2-7 April 1989, Honolulu, Hawaii. National Oceanic and Atmospheric Administration, 1990, p. 827-847.
[30] Albertsson A-C, Andersson SO & Karlsson S. The mechanism of biodegradation of polyethylene, Polymer Degradation and Stability, 18: 73-87, 1987.
[31] Singh B & Sharma N. Mechanistic implications of plastic degradation, Polymer Degradation and Stability, 93: 561-584, 2008.
[32] Emadian SM, Onay TT & Demirel B. Biodegradation of bioplastics in natural environments, Waste Management, 59: 526-536, 2017.
doi: 10.1016/j.wasman.2016.10.006
[33] Mohair R & Kumar S. Challenges Associated with Plastic Waste Disposal and Allied Microbial Routes for its Effective Degradation: A Comprehensive Review. , Journal of Cleaner Production, 208: 65-76, 2019.
doi: 10.1016/j.jclepro.2018.10.059
[34] Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, Yang SZ, Liu JF, Sand W, Gu JD & Mu BZ. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials, Bioresource Technology, 288: 121401, 2019.
doi: 10.1016/j.biortech.2019.121401
[35] Gómez-Méndez LD, Moreno-Bayona DA, Poutou-Piñales RA, Salcedo-Reyes JC, Pedroza-Rodríguez AM, Vargas A & Bogoya JM. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus, Plos One, 13 (9): e0203786, 2018.
doi: 10.1371/journal.pone.0203786
[36] Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, Barbe V, Meistertzheim AL & Ghiglione JF. Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the ”Plastisphere”, Frontiers in Microbiology, 10: 865, 2019.
doi: 10.3389/fmicb.2019.00865
[37] Novak B, Pająk J, Drozd-Bratkowicz M & Rymarz G. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions, International Biodeterioration & Biodegradation, 65(6): 757-767, 2011.
doi: 10.1016/j.ibiod.2011.04.007
[38] Moreno-Bayona DA, Gómez-Méndez LD, Blanco-Vargas A, Castillo-Toro A, Herrera- Carlosama L, Poutou-Piñales RA, Salcedo-Reyes JC, Díaz-Ariza LA, Castillo-Carvajal LC, Rojas-Higuera NS & Pedroza-Rodríguez AM. Simultaneous bioconversion of lignocellulosic residues and oxodegradable polyethylene by Pleurotus ostreatus for biochar production, enriched with phosphate solubilizing bacteria for agricultural use, Plos One, 14(5): e0217100, 2019.
doi: 10.1371/journal.pone.0217100
[39] Wong DWS. Structure and action mechanism of ligninolytic enzymes, Applied Biochemestry and Biotechnology, 157: 174–209, 2009.
[40] Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV & Okoh AI. Lignin peroxidase functionalities and prospective applications, Microbiology Open, 6 (1): e00394, 2017.
doi: 10.1002/mbo3.394
[41] Solomon EI, Sundaram UM & Machonkin TE. Multicopper Oxidases and Oxygenases, Chemical Reviews, 96 (7): 2563–2606, 1996.
[42] Fu Y, Zhang K, Wang N & Du J. Effects of aqueous chlorine dioxide treatment on polyphenol oxidases from Golden Delicious apple, LWT - Food Science and Technology, 40: 1362-1368, 2007.
[43] Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M & Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization, Environmental Science Technology, 54(19): 11657-11672, 2020.
doi: 10.1021/acs.est.0c02305
[44] Pathak VM & Navneet. Review on the current status of polymer degradation: a microbial approach, Bioresources and Bioprocessing, 4 (1): 15, 2017.
doi: 10.1186/s40643-017-0145-9
[45] Sánchez C. Microbial capability for the degradation of chemical additives present in petroleum-based plastic products: A review on current status and perspectives, Journal of Hazardous Materials, 402: 123534, 2021.
doi: 10.1016/j.jhazmat.2020.123534
[46] Qin M, Chen C, Song B, Shen M, Cao W, Yang H, Zeng G & Gong J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments?, Journal of Cleaner Production, 312: 127816, 2021.
doi: 10.1016/j.jclepro.2021.127816
[47] Mohanan N, Montazer Z, Sharma PK & Levin DB. Microbial and Enzymatic Degradation of Synthetic Plastics, Frontiers in Microbiology, 11: 580709, 2020.
doi: 10.3389/fmicb.2020.580709
[48] Yuan J, Ma J, Sun Y, Zhou T, Zhao Y & Yu F. Microbial degradation and other environmental aspects of microplastics/plastics, Science of the Total Environment, 715: 136968, 2020.
doi: 10.1016/j.scitotenv.2020.136968
[49] Hilgers R, Vincken JP, Gruppen H & Kabel MA. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures, ACS Sustain Chemical Engineering, 6(2): 2037-2046, 2018.
doi: 10.1021/acssuschemeng.7b03451
[50] Rodrigues da Luz JM, Paes SA, Ribeiro KVG, Mendes IR & Kasuya MCM. Degradation of Green Polyethylene by Pleurotus ostreatus, Plos One, 10(6): e0126047, 2015.
doi: 10.1371/journal.pone.0126047
[51] Krueger MC, Harms H & Schlosser D. Prospects for microbiological solutions to environmental pollution with plastics, Applied Microbiology and Biotechnology, 99: 8857–8874, 2015.
doi: 10.1007/s00253-015-6879-4
[52] Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C & Leong KH. An overview of degradable and biodegradable polyolefins, Progress in Polymer Science, 36(8): 1015–1049, 2011.
doi: 10.1016/j.progpolymsci.2010.12.002
[53] Ruggero F, Gori R & Lubello C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion - A review, Waste Management & Research, 37 (10): 959-975, 2019.
doi: 10.1177/0734242X19854127
[54] Guillet JE. Polymers with controlled lifetimes, in Guillet, (Eds). Polymers and Ecological Problems. Plenum Press, New York, USA, 1973.
[55] Guillet J. Plastics and the environment, in Scott & Gilead, (Eds). Degradable Polymers. Springer, Dordrecht, 1995, p. 216-246.
[56] Report. TG (1990) Report of a task force set up by the Attorneys General of the USA to investigate ’Green Marketing’.
[57] Makhijani AB & Lichtenberg AJ (1971) An assessment of energy and materials utilization in the USA, Memorandum no. ERL-M31O (Revised), Electronics Research Laboratory, College of Engineering, University of California, Berkeley, USA.
[58] Commoner B. The environmental cost of economic growth, Chemistry in Britain, 8(2): 52–56, 1972.
[59] Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I & Muhammad S. Biodegradation of plastics: current scenario and future prospects for environmental safety, Environmental Science Pollution Research International, 25 (8):7287-7298, 2018.
doi: 10.1007/s11356-018-1234-9
[60] Spierling S, Knüpffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, Albrecht S, Herrmann C & Endres H-J. Bio-based plastics - A review of environmental, social and economic impact assessments, Journal of Cleaner Production, 185: 476-491, 2018.
doi: 10.1016/j.jclepro.2018.03.014
[61] Scott G, Polymers and the environment, First Edition ed., Royal Society of Chemistry 1999.
[62] Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M & Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012), Pure and Applied Chemistry, 84 (2): 377-419, 2012.
doi: 10.1351/PAC-REC-10-12-04
[63] Sheavly SB & Register KM. Marine Debris & Plastics: Environmental Concerns, Sources, Impacts and Solutions, Journal of Polymers and the Environment, 15 (4): 301-305, 2007.
doi: 10.1007/s10924-007-0074-3
[64] Scott G. Why Degradable Polymers?, in Scott, (Eds). Degradable Polymers. Springer, Dordrecht, Holland, 2002, p. 1-15.
[65] Rujnic-Sokele M & Pilipovic A. Challenges and opportunities of biodegradable plastics: A mini review, Waste Management Research, 35 (2): 132-140, 2017.
doi: 10.1177/0734242X16683272
[66] Müller R-J, Biodegradability of Polymers: Regulations and Methods for Testing, ed., Wiley Online library 2005.
[67] Kawai F. Breakdown of plastics and polymers by microorganisms, Advances in Biochemical Engineering/Biotechnology, 52: 151-194, 1995.
doi: 10.1007/BFb0102319
[68] Chinaglia S, Tosin M & Degli-Innocenti F. Biodegradation rate of biodegradable plastics at molecular level, Polymer Degradation and Stability, 147: 237-244, 2018.
doi: 10.1016/j.polymdegradstab.2017.12.011
[69] Hadad D, Geresh S & Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis, Journal of Applied Microbiology, 98 (5): 1093-1100, 2005.
doi: 10.1111/j.1365-2672.2005.02553.x
[70] Rose RS, Richardson KH, Latvanen EJ, Hanson CA, Resmini M & Sanders IA. MicrobialDegradation of Plastic in Aqueous Solutions Demonstrated by CO2 Evolution and Quantification, International Journal of Molecular Sciences, 21 (4): 1176, 2020.
doi: 10.3390/ijms21041176
[71] Harrison JP, Boardman C, O'Callaghan K, Delort AM & Song J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review, Royal Society Open Science, 5 (5): 171792, 2018.
doi: 10.1098/rsos.171792
[72] Williams AT & Simmons SL. The degradation of plastic litter in rivers - implications for beaches, Journal of Coastal Conservation, 2: 63-72, 1996.
[73] Otey FH, Westhoff RP & Doane WM. Starch-Based Blown Films, Ind. Eng. Chem. Prod. Res. D, 19: 592-595, 1980.
doi: 10.1021/i360076a021
[74] Koutny M, Lemaire J & Delort AM. Biodegradation of polyethylene films with prooxidant additives, Chemosphere, 64 (8): 1243-1252, 2006.
doi: 10.1016/j.chemosphere.2005.12.060
[75] Andrady AL. The plastic in microplastics: A review, Marine Pollution Bulletin, 119 (1):12-22, 2017.
doi: 10.1016/j.marpolbul.2017.01.082
[76] ONU Medio Ambiente (2018) Plasticos de un solo uso - Hoja de ruta para la sostenibliidad. pp: 104.
[77] Vogt NB & Kleppe EA. Oxo-biodegradable polyolefins show continued and increased thermal oxidative degradation after exposure to light, Polymer Degradation and Stability, 94 (4): 659-663, 2009.
doi: 10.1016/j.polymdegradstab.2009.01.002
[78] Billingham NC, Bonora M & De Corte D. Environmentally Degradable Plastics Based on Oxo-Biodegradation of Conventional Polyolefins, in Chiellini & Solaro, (Eds). Biodegradable Polymers and Plastics. Springer, Boston, MA. USA, 2003, p. 313-325.
[79] Panahi L, Gholizadeh M & Hajimohammadi R. Investigating the degradability of polyethylene using starch, oxo‐material, and polylactic acid under the different environmental conditions, Asia-Pacific Journal of Chemical Engineering, 15 (1): e2402, 2020.
doi: 10.1002/apj.2402
[80] Benítez A, Sánchez JJ, Arnal ML & Müller AJ. Monitoring abiotic degradation of branched polyethylenes formulated with pro-oxidants through different mechanical tests, Polymer Degradation and Stability, 98 (9): 1705-1716, 2013.
doi: 10.1016/j.polymdegradstab.2013.06.004
[81] Antelava A, Constantinou A, Bumajdad A, Manos G, Dewil R & Al-Salem SM. Identificationof Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort to Combat Plastic Waste Accumulation, Journal of Polymers and the Environment, 28 (9):2364-2376, 2020.
doi: 10.1007/s10924-020-01776-x
[82] Roy PK, Surekha P, Raman R & Rajagopal C. Investigating the role of metal oxidation state on the degradation behaviour of LDPE, Polymer Degradation and Stability, 94 (7):1033-1039, 2009.
doi: 10.1016/j.polymdegradstab.2009.04.025
[83] Martínez-Romo A, González-Mota R, Soto-Bernal JJ & Rosales-Candelas I. Investigating the Degradability of HDPE, LDPE, PE-BIO, and PE-OXO Films under UV-B Radiation, Journal of Spectroscopy, 2015: Article ID 586514, 2015.
doi: 10.1155/2015/586514
[84] Arráez FJ, Arnal ML & Müller AJ. Thermal and UV degradation of polypropylene with pro-oxidant. Abiotic characterization, Journal of Applied Polymer Science, 135 (14): 46088,2018.
doi: 10.1002/app.46088
[85] Khajehpour-Tadavani S, Nejabat G-R & Mortazavi SMM. Changes in crystallinity of HDPE films containing different amounts of an oxo-biodegradable additive due to UVC exposure, Polyolefins Journal, 7 (1): 25-32, 2020.
doi: 10.22063/poj.2019.2468.1135
[86] Asriza RO, Arcana IM & Fabiani VA. Thermal degradation of High-Density Polyethylene Containing Cobalt Stearat as Oxidant Additive, IOP Conference Series: Earth and Environmental Science, 353: 012036, 2019.
doi: 10.1088/1755-1315/353/1/012036
[87] Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F & Camargo F. Degradability of linear polyolefins under natural weathering, Polymer Degradation and Stability, 96 (4): 703-707, 2011.
doi: 10.1016/j.polymdegradstab.2010.12.004
[88] Pablos JL, Abrusci C, Marín I, López-Marín J, Catalina F, Espí E & Corrales T. Photodegradation of polyethylenes: Comparative effect of Fe and Ca-stearates as pro-oxidant additives,Polymer Degradation and Stability, 95 (10): 2057-2064, 2010.
doi: 10.1016/j.polymdegradstab.2010.07.003
[89] Benítez A, Sánchez JJ, Arnal ML, Müller AJ, Rodríguez O & Morales G. Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive, Polymer Degradation and Stability, 98 (2): 490-501, 2013.
doi: 10.1016/j.polymdegradstab.2012.12.011
[90] Eyheraguibel B, Leremboure M, Traikia M, Sancelme M, Bonhomme S, Fromageot D, Lemaire J, Lacoste J & Delort AM. Environmental scenarii for the degradation of oxopolymers, Chemosphere, 198: 182-190, 2018.
doi: 10.1016/j.chemosphere.2018.01.153
[91] Jakubowicz I & Enebro J. Effects of reprocessing of oxobiodegradable and non-degradable polyethylene on the durability of recycled materials, Polymer Degradation and Stability, 97(3): 316-321, 2012.
doi: 10.1016/j.polymdegradstab.2011.12.011
[92] Aldas M, Paladines A, Valle V, Pazmiño M & Quiroz F. Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling, International Journal of Polymer Science, 2018: 1-10, 2018.
doi: 10.1155/2018/2474176
[93] Focke WW, Mashele RP & Nhlapo NS. Stabilization of low-density polyethylene films containing metal stearates as photodegradants, Journal of Vinyl and Additive Technology, 17 (1): 21-27, 2011.
doi: 10.1002/vnl.20248
[94] Zarei S, Nejabat G-R, Mortazavi S-M-M & Khajehpour-Tadavani S. Thermal and tensile behavior of LLDPE films containing limited amounts of an oxo-biodegradable additive and/or amorphous poly(1-hexene) before and after UV irradiation, Polyolefins Journal, 7 (2): 111-119, 2020.
doi: 10.22063/poj.2020.2611.1149
[95] Suresh B, Maruthamuthu S, Kannan M & Chandramohan A. Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation, Polymer Journal, 43 (4): 398-406, 2011.
doi: 10.1038/pj.2010.147
[96] Al-Salem SM, Sultan HH, Karam HJ & Al-Dhafeeri AT. Determination of biodegradation rate of commercial oxo-biodegradable polyethylene film products using ASTM D 5988, Journal of Polymer Research, 26 (7): 157, 2019.
doi: 10.1007/s10965-019-1822-5
[97] Jiang X, Han J, Han Q, Zhou X & Ma J. Preparation and Characteristics of paper-based biodegradable plastics, BioResources, 10 (2): 2982-2994, 2015.
[98] Teodorescu C, Mitrana L & Teiu A-C. The behaviour of the oxo-biodegradable LDPE materials during the service life, Ovidius University Annals of Chemistry, 23 (2): 187-190, 2012.
[99] Dang TCH, Nguyen DT, Thai H, Nguyen TC, Tran TTH, Le VH, Nguyen VH, Tran XB, T Pham hPT, Nguyen TG & Nguyen QT. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam, Advances in Natural Sciences: Nanoscience and Nanotechnology, 9: 015014, 2018.
doi: 10.1088/2043-6254/aaabaf
[100] Gutierrez RM, Meg-ay V. Daupan SM, Fabian AV & Miclat CC. Microbiological Investigationon Some Biodegradable Plastics used as Packaging Materials, Asian Journal of Applied Sciences, 03 (01): 75-81, 2015.
[101] Rodrigues da Luz JM, Albino Paes S, Dias Nunes M, de Cássia Soares da Silva M & Megumi Kasuya MC. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus, Plos One, 8 (8): e69386, 2013.
doi: 10.1371/journal.pone.0069386
[102] Raninger B, Steiner G, Wiles DM & Hare CWJ. Tests on composting of degradable polyethylene in respect to the quality of the end product compost, in Insam, Riddech & Klammer, (Eds). Microbiology of Composting. Springer, Berlin, Germany, 2002, p. 299-308.
[103] Vaverková M, Adamcová D, Kotovicová J & Toman F. Evaluation of biodegradability of plastics bags in composting conditions, Ecological Chemistry and Engineering S, 21 (1): 45-57, 2014.
doi: 10.2478/eces-2014-0004
[104] Musiol M, Rydz J, Janeczek H, Radecka I, Jiang G & Kowalczuk M. Forensic engineering of advanced polymeric materials Part IV: Case study of oxo-biodegradable polyethylene commercial bag - Aging in biotic and abiotic environment, Waste Management, 64: 20-27, 2017.
doi: 10.1016/j.wasman.2017.03.043
[105] Lukanina YK, Popov AA & Khvatov V (2020) IOP Conference Series: Materials Science and Engineering. 921 012016. pp.
doi: 10.1088/1757-899X/921/1/012016
[106] Gomes LB, Klein JM, Brandalise RN, Zeni M, Zoppas BC & Grisa AMC. Study of oxobiodegradable polyethylene degradation in simulated soil, Materials Research, 17 (suppl 1):121-126, 2014.
doi: 10.1590/1516-1439.224713
[107] Briassoulis D, Babou E, Hiskakis M & Kyrikou I. Degradation in soil behavior of artificially aged polyethylene films with pro-oxidants, Journal of Applied Polymer Science, 132 (30):42289, 2015.
doi: 10.1002/app.42289
[108] Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson J-M, Courdavault J-P, Pitteri S, Samuel G, Pichon G, Lemaire J & Delort A-M. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives, Polymer Degradation and Stability, 95: 1011-1021, 2010.
doi: 10.1016/j.polymdegradstab.2010.03.009
[109] Koutny M, Amato P, Muchova M, Ruzicka J & Delort A-M. Soil bacterial strains able to grow on the surface of oxidized polyethylene film containing prooxidant additives, International Biodeterioration & Biodegradation, 63 (3): 354-357, 2009.
doi: 10.1016/j.ibiod.2008.11.003
[110] Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I & Catalina F. Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives, International Biodeterioration & Biodegradation, 65 (3): 451-459, 2011.
doi: 10.1016/j.ibiod.2010.10.012
[111] Kyrikou I, Briassoulis D, Hiskakis M & Babou E. Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants, Polymer Degradation and Stability, 96 (12): 2237-2252, 2011.
doi: 10.1016/j.polymdegradstab.2011.09.001
[112] Husarova L, Machovsky M, Gerych P, Houser J & Koutny M. Aerobic biodegradation of calcium carbonate filled polyethylene film containing pro-oxidant additives, Polymer Degradation and Stability, 95 (9): 1794-1799, 2010.
doi: 10.1016/j.polymdegradstab.2010.05.009
[113] Markowicz F, Król G & Szymańska-Pulikowska A. Biodegradable Package – Innovative Purpose or Source of the Problem, Journal of Ecological Engineering, 20 (1): 228-237, 2019.
doi: 10.12911/22998993/94585
[114] Markowicz & Szymańska P. Analysis of the Possibility of Environmental Pollution by Composted Biodegradable and Oxo-Biodegradable Plastics, Geosciences, 9 (11): 460, 2019.
doi: 10.3390/geosciences9110460
[115] Jakubowicz I, Yarahmadi N & Petersen H. Evaluation of the rate of abiotic degradation of biodegradable polyethylene in various environments, Polymer Degradation and Stability, 91(7): 1556-1562, 2006.
doi: 10.1016/j.polymdegradstab.2005.09.018
[116] Quecholac-Pina X, Garcia-Rivera MA, Espinosa-Valdemar RM, Vazquez-Morillas A, Beltran-Villavicencio M & Cisneros-Ramos AL. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation, Environmental Science Pollution Research International, 24 (33): 25725-25730, 2017.
doi: 10.1007/s11356-016-6553-0
[117] Jakubowicz I, Yarahmadi N & Arthurson V. Kinetics of abiotic and biotic degradability of low-density polyethylene containing prodegradant additives and its effect on the growth of microbial communities, Polymer Degradation and Stability, 96: 919-928, 2011.
doi: 10.1016/j.polymdegradstab.2011.01.031
[118] Roé-Sosa A, Estrada MR, Calderas F, Sánchez-Arévalo F, Manero O & de Velasquez MTOL. Degradation and biodegradation of polyethylene with pro-oxidant aditives under compost conditions establishing relationships between physicochemical and rheological parameters, Journal of Applied Polymer Science, 132 (43): 42721, 2015.
doi: 10.1002/app.42721
[119] Corti A, Muniyasamy S, Vitali M, Imam SH & Chiellini E. Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation, Polymer Degradation and Stability, 95: 1106e1114, 2010.
[120] Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM & Camargo FAO. Abiotic and biotic degradation of oxo-biodegradable polyethylenes, Polymer Degradation and Stability, 94: 965–970, 2009.
doi: 10.1016/j.polymdegradstab.2009.03.011
[121] Jeon HJ & Kim MN. Degradation of linear low density polyethylene (LLDPE) exposed to UV-irradiation, European Polymer Journal, 52: 146-153, 2014.
doi: 10.1016/j.eurpolymj.2014.01.007
[122] Contat-Rodrigo L. Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive, Polymer Degradation and Stability, 98(11): 2117-2124, 2013.
doi: 10.1016/j.polymdegradstab.2013.09.011
[123] Yashchuk O, Portillo FS & Hermida EB. Degradation of Polyethylene Film Samples Containing Oxo-Degradable Additives, Procedia Materials Science, 1: 439-445, 2012.
doi: 10.1016/j.mspro.2012.06.059
[124] Eyheraguibel B, Traikia M, Fontanella S, Sancelme M, Bonhomme S, Fromageot D, Lemaire J, Lauranson G, Lacoste J & Delort AM. Characterization of oxidized oligomers from polyethylene films by mass spectrometry and NMR spectroscopy before and after biodegradation by a Rhodococcus rhodochrous strain, Chemosphere, 184: 366–374, 2017.
doi: 10.1016/j.chemosphere.2017.05.137
[125] Dussud C, Hudec C, George M, Fabre P, Higgs P, Bruzaud S, Delort AM, Eyheraguibel B, Meistertzheim AL, Jacquin J, Cheng J, Callac N, Odobel C, Rabouille S & Ghiglione JF. Colonization of Non-biodegradable and Biodegradable Plastics by Marine Microorganisms, Frontiers in Microbiology, 9: 1571, 2018.
doi: 10.3389/fmicb.2018.01571
[126] Alam O, Yang L & Yanchun X. Determination of the selected heavy metal and metalloid contents in various types of plastic bags, Journal of Environmental Health Science Engineering, 17 (1): 161-170, 2019.
doi: 10.1007/s40201-019-00337-2
[127] Huerta-Pujol O, Soliva M, Giro F & Lopez M. Heavy metal content in rubbish bags used for separate collection of biowaste, Waste Management, 30 (8-9): 1450-1456, 2010.
doi: 10.1016/j.wasman.2010.03.023
[128] Shruti VC, Perez-Guevara F, Roy PD, Elizalde-Martinez I & Kutralam-Muniasamy G. Identification and characterization of single use oxo/biodegradable plastics from Mexico City, Mexico: Is the advertised labeling useful?, Science of the Total Environment, 739: 140358, 2020.
doi: 10.1016/j.scitotenv.2020.140358
[129] Boscaro ME, De Nadai Fernandes EA, Bacchi MA, Martins-Franchetti SM, dos Santos LGC & dos Santos SSNSC. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics, Journal of Radioanalytical and Nuclear Chemistry, 303 (1): 421-426, 2015.
doi: 10.1007/s10967-014-3485-3
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.