Published Jun 23, 2023



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Mario Alberto Marsiglia Lans

Edineldo Lans-Ceballos

Emma Sofía Lans-Cuesta

Oscar Forero Doria

Luis Guzman Jofré

##plugins.themes.bootstrap3.article.details##

Abstract

The objective of this work was to evaluate water quality in the Sinú River in northern Colombia, during
its dry and rainy seasons. The water quality index (WQI), the heavy metal pollution index (HPI),
the heavy metal evaluation index (HEI), the heavy metal toxicity load (HMTL), and the degree of
contamination (Cd) were calculated based on analyses of water samples taken along the entire length
of the river at sixteen sampling sites. Comprehensive and in some cases punctual samplings were
performed depending on the morphology of the current. Five samplings were carried out in the dry and
rainy periods from March 2008 to April 2009. All samples were taken in triplicate at each sampling
site. For the determination of metals, a Thermo electron atomic absorption spectrometer, model
S4AA System was used. Of the metals monitored, only zinc, iron, and manganese were identified at
quantifiable levels, with average values of 8.5 x 10⁻⁵ kg m-3, 0.004 424 kg m-3 and 8.5x10⁻⁵ kg m-3,
respectively in the rainy season. The obtained index values altogether (WQI =63.5, HPI=145, HEI=24, HMTL=0.1329, and Cd= 20.8) revealed the presence of contamination by heavy metals in the Sinú River, although the observed toxicity level does not imply a hazard to human health.

Keywords

Contamination, spectroscopy, water.

References
1. Al-Ani MY, Al-Nakib SM, Rith NM, & Nouri AH. Water quality index applied to the classification and zoning of Al-Jaysh canal, Baghdad – Iraq. Journal of Environmental Science and Health. PartA: Environmental Science and Engineering, 22(4): 305–319. 1987.
doi: 10.1080/10934528709375351
2. Ameh EG. Geostatistics and heavy metal indexing of surface water around Okaba coal mines, KogiState, Nigeria. Asian Journal. Environment. Science, 8(1): 1–8. 2013.
3. American Public Health Association, American Water Works Association, WEF, Standard Methods for the Examination of water and wastewater (21st ed), 2005.
4. Anadon A, Muñoz MJ, O. JA. Acumulación tisular de Zinc, Plomo, Cobre, Hierro y Cromo en Truchasde Río, Salmo trutta fario. AcciónEcotoxicológica. An. INIA/Ser. Ganadera, 19. 1984.
5. Backman B, Bodiš D, Lahermo P, Rapant S, Tarvainen T. Application of a groundwater contaminationindex in Finland and Slovakia. Environmental Geology, 36(1–2): 55–64. 1998.
doi: 10.1007/s002540050320
6. Custodio M, Peñaloza R, Espinoza C, Peralta-Ortiz T, Ordinola-Zapata A, Sánchez-Suárez H, Vieyra-Peña E. Data on the concentration of heavy metals and metalloids in lotic water of the Mantaro river watershed and human risk assessment, Peru. Data in Brief, 30: 105-493. 2020.
doi: 10.1016/j.dib.2020.105493.
7. Corporación Autónoma de los Valles del Sinú y San Jorge-CVS. Las fuentes de agua en Córdoba. Banco de la República. 1998.
8. Corporación Autónoma de los Valles del Sinú y San Jorge - CVS. Tasas Retributivaspor Contaminación Hídrica. 2000.
9. Domenech X, Peral J. Química ambiental de los sistemas terrestres. Reverté, 2006.
10. García Cambe JP. “Estado actual de la contaminación por metales pesados y pesticidadas organoclorados en el parque natural de Monfragüe”. Universidad de Extremadura. 2002.
11. Garbarino JP. Heavy metals in the Mississippi River 1987–1992 (testimony of Brinton TI, Taylor HE, Garbarino JR, Hayes HC, Roth DA, Antweiler RC). 1995.
12. Gómez-Álvarez A, Villalba-Atondo A, Acosta-Ruiz G, Casañeda-Olivares M, Kamp D. Metales pesados en el agua superficial del río San Pedro durante 1997 y 1999. Revista Internacional- Contaminación Ambiental. 20(1): 5–12. 2004.
13. Gudiño-Guzmán B, Bárcena-Soto M, Casillas-Santana N, Gutiérrez De La Torre MH, Larios- Durán ER, Guerrero-De León AA. Determinación de metales pesados por ASV en el canal La Aurora, rio Santiago. Jalisco, México. 2020.
https://doi.org/10.13140/RG.2.2.22510.02888
14. Holguín C, Rubio H, Olave ME, Saucedo R, Gutiérrez M, Bautista R. Calidad del agua del Río Conchosen la región de Ojinaga, Chihuahua: Parámetros fisicoquímicos, metales y metaloides. Universidad y Ciencia, 22(1): 51–63. 2006.
15. Nueva medición de la calidad de agua en los ríos Magdalena y Cauca. (Meteorología y Estudios Ambientales). IDEAM (Instituto de Hidrología). 2007.
16. Jordan YC, Ghulam A, Hartling S. Traits of surface water pollution under climate and land usechanges: A remote sensing and hydrological modeling approach, Earth-Science Reviews, 128: 181–195. 2014.
https://doi.org/10.1016/j.earscirev.2013.11.005
17. Kumar V, Parihar RD, Sharma A, Bakshi P, Singh Sidhu GP, Bali AS, Karaouzas I, Bhardwaj R, ThukralAK, Gyasi-Agyei Y, Rodrigo-Comino J. Global evaluation of heavy metal content in surfacewater bodies: A meta-analysis using heavy metal pollution indices and multivariate statistic al analyses. Chemosphere, 236: 124–364. 2019.
doi.org/10.1016/j.chemosphere.2019.124364
18. Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Assessment of heavy metal pollution, spatialdistribution and origin in agricultural soils along the Sinú River Basin, Colombia, Environmental Research, 154: 380–388. 2017.
https://doi.org/10.1016/j.envres.2017.01.021
19. Mitra S, Chakraborty A J, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H,Alhumaydhi FA, Simal-Gandara J. Impact of heavy metals on the environment and humanhealth: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science, 34(3): 101–865. 2022.
https://doi.org/10.1016/j.jksus.2022.101865
20. Mohanakavitha T, Divahar R, Meenambal T, Shankar K, Rawat VS, Haile TD, Gadafa C. Dataset on theassessment of water quality of surface water in Kalingarayan Canal for heavy metal pollution,Tamil Nadu. Data in Brief, 22: 878–884. 2019.
https://doi.org/10.1016/j.dib.2019.01.010
21. Muhammad S, Shah MT, Khan S. Health risk assessment of heavy metals and their sourceapportionment in drinking water of Kohistan region, northern Pakistan. MicrochemicalJournal, 98(2): 334–343. 2011.
https://doi.org/10.1016/j.microc.2011.03.003
22. Navarro-Aviñó JP, Aguilar Alonso, L MJR. Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas, 16(2): 10–25. 2007.
23. Nies DH. Microbial heavy-metal resistance. Applied Microbiology and Biotechnology. 51(6): 730–750. 1999.
doi: 10.1007/s002530051457.
24. Qu L, Huang H, Xia F, Liu Y, Dahlgren RA, Zhang M, Mei K.Risk analysis of heavy metal concentrationin surface waters across the rural-urban interface of the Wen-Rui Tang River, China. EnvironmentalPollution, 237: 639–649. 2018.
https://doi.org/10.1016/j.envpol.2018.02.020
25. Rojas O. Índices de Calidad del agua en Fuente de Captación. Seminario Internacional Sobre Calidad Del Agua Para Consumo, 1991.
26. Rubio-Arias H, Quintana C, Jimenez-Castro J, Quintana R, Gutierrez M. Contamination of the ConchosRiver in Mexico: Does It Pose a Health Risk to Local Residents? International Journal of Environmental Research and Public Health, 7(5): 2071–2084. 2010.
https://doi.org/10.3390/ijerph7052071.
27. Saha P, Paul B. Assessment of heavy metal toxicity related with human health risk in the surfacewater of an industrialized area by a novel technique. Human and Ecological Risk Assessment, 25(4). 2018.
https://doi.org/10.1080/10807039.2018.1458595
28. Sheykhi V, Moore F. Geochemical characterization of kor river water quality, fars province, southwestIran. Water Quality Exposure and Health, 4(1): 25–38. 2012.
29. Siegel FR. Environmental Geochemistry of Potentially Toxic Metals. Springer Verlag, Berlin. 2002. Tietze L, Kettschau G, Topics in Current Chemistry, 189: 1–120. 1997.
30. Tiwari AK, De Maio M, Singh PK, Mahato MK. Evaluation of Surface Water Quality by Using GIS and aHeavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India. Bulletin of Environmental Contamination and Toxicology, 95(3): 304–310. 2015.
https://doi.org/10.1007/s00128-015-1558-9
31. Tiwari AK, Singh AK. Hydro-geochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh. Journal of Geology Society of India, 83: 329–343. 2014.
32. Tscheikner-Gratl F, Bellos V, Schellart A, Moreno-Rodenas A, Muthusamy M, Langeveld J, Clemens F,Benedetti L, Rico-Ramirez MA, de Carvalho RF, Breuer L, Shucksmith J, Heuvelink GBM, Tait S. Recent insights on uncertainties present in integrated catchment water quality modeling. Water Research, 150: 368–379. 2019.
33. Vink R, Behrendt H, Salomons W. Development of the heavy metal pollution trends in severalEuropean rivers: An analysis of point and diffuse sources. Water Science and Technology, 39(12), 1999.
https://doi.org/10.1016/S0273-1223(99)00338-8
34. Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem Journal, 94: 99–107. 2010.
35. WHO. Guidelines for Drinking-Water Quality, fourth ed. Incorporating the first addendum. 2017.
Yin K, Wang Q, Lv M, Chen L. Microorganism remediation strategies towards heavy metals.
Chemical Engineering Journal, 10: 226. 2018.
doi.org/10.1016/j.cej.
36. Yin K, Wang Q, Lv, M., & Chen, L. Microorganism remediation strategies towards heavy metals.
Chemical Engineering Journal, 360: 1553–1563. 2019.
doi.org/10.1016/j.cej.2018.10.226
37. Zhou Q, Yang N, Li Y, Ren B, Ding X, Bian H, Yao X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22: 00925. 2020.
https://doi.org/10.1016/j.gecco.2020.e00925
How to Cite
Marsiglia Lans, M. A., Lans-Ceballos, E., Lans-Cuesta, E. S., Forero Doria, O., & Guzman Jofré, L. (2023). Water quality and heavy metal levels in the Sinú River, a drinking water source in the Colombian Caribbean. Universitas Scientiarum, 28(2), 165–182. https://doi.org/10.11144/Javeriana.SC282.wqah
Section
Analytic Chemistry