Published Sep 27, 2023



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Fabio Idrovo

Tiffany Cevallos-Vilatuña

##plugins.themes.bootstrap3.article.details##

Abstract

Environmental factors affect nearly all land areas on the planet. Global warming is one of the most destructive of these factors because it has adverse effects on crop production systems. Plants are sessile organisms that have evolved complex mechanisms to cope with stress factors. Heat shock proteins (HSPs) are one of those mechanisms. In this study, we analyzed a partial gene sequence that encodes for HSP70 protein in Vasconcellea pubescens. We also measured the relative expression of the gene in plantlets of Vasconcellea pubescens and performed biochemical assays under heat stress. The plantlets were exposed to three temperatures 25° C (control), 45 °C and 55 °C (stress temperatures) for 4 hours. The bioinformatic analysis led to the first description of a partial sequence of the HSP70 gene and its evolutionary history in V. pubescens. We found significant differences for relative expression of theHSP70 gene, percentage of electrolyte leakage, and proline content between plants subjected to heat stress and those in the control group. Our results showed that V. pubescens displays thermotolerance even under extreme temperatures. V. pubescens is a poorly studied species that may contain genes of biotechnological interest (such as HSP70) that could be used for plant genetic modification.

Keywords

HSP70, Vasconcella pubescens, thermal stress, global warming, thermotolerant

References
[1] Ortiz-Bobea A, Wang H, Carrillo CM, Ault TR. Unpacking the climatic drivers of US agricultural yields, Environ. Res. Lett. 14: 064003, 2019.
doi: doi.org/10.1088/1748-9326/ab1e75
[2] Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development, Weath Clim Extr, 10:Part A, 4-10, 2015.
doi: 10.1016/j.wace.2015.08.001
[3] Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015; 38(9): 1699-1712.
doi: 10.1111/pce.12417
[4] Gray SB, & Brady SM. Plant developmental responses to climate change, Dev Biol, 419:1,64–77, 2016.
doi: 10.1016/j.ydbio.2016.07.023
[5] Rana RM, Khan MA, Shah M, Ali Z, Zhang H. Insights into the Mechanism of Heat Shock Mitigation Through Protein Repair, Recycling and Degradation. In: Calderwood SK, Asea AA, Kaur P. (Eds), Heat Shock Proteins and Plants Vol. 10, 2016. Springer: Cham, Switzerland. p. 103.
doi: 10.1007/978-3-319-46340-7
[6] Sørensen JG, Kristensen TN, Loeschcke V. The evolutionary and ecological role of heat shock proteins, Ecol Lett, 6(11), 1025–1037, 2003.
doi: 10.1046/j.1461-0248.2003.00528.x
[7] Vierling, E. The Roles of Heat Shock Proteins in Plants, Annu. rev. plant physiol. plant mol.biol, 42:620 579–620, 1991.
doi: 10.1146/annurev.pp.42.060191.003051
[8] Carey CC, Gorman KF, Rutherford S. Modularity and intrinsic evolvability of Hsp90-buffered change, PLoS ONE, 1(1), 1–6, 2006.
doi: 10.1371/journal.pone.0000076
[9] Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance, Plant Biotechnol J. 15(4):405-414, 2017.
doi: 10.1111/pbi.12659
[10] Koh Y, Lim C. Role of Changes in Body Temperature. In: Papadakos PJ, Burkhard L, Visser-Isles L (Eds). Mechanical Ventilation, Acute Lung Injury, 2008. W.B. Saunders:Philadelphia, USA. pp. 51-60.
doi: 10.1016/B978-0-7216-0186-1.50010-7
[11] Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019 Nov; 20(11): 665-680.
doi: 10.1038/s41580-019-0133-3
[12] Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks, Plant, Cell and Env, 38(9), 1881–1895, 2015.
doi: 10.1111/pce.12396
[13] Truman AW. Cracking the Chaperone Code: Cellular Roles for Hsp70 Phosphorylation, Trends in Bioch Sci, xx, 1–3, 2017.
doi: 10.1016/j.tibs.2017.10.002
[14] Sarkar NK, Kundnani P, Grover A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa), Cell Stress and Chap, 18(4), 427–437, 2013.
doi: 10.1007/s12192-012-0395-6
[15] Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci, 62, 670-684, 2005.
doi: 10.1007/s00018-004-4464-6
[16] Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol. 2001 May; 8(5): 427-32.
doi: 10.1038/87588
[17] Peña D, Villena P, Aguirre AJ, Jiménez C. Diversidad genética de accesiones de la familia Caricaceae en el sur de Ecuador. Maskana, 8(1), 85–102, 2017.
doi: 10.18537/mskn.08.01.08
[18] Tineo D, Bustamante DE, Calderon MS, Mendoza JE, Huaman E, Oliva M. An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea) from northern Peru. PLoS One. 2020 Dec 10;15(12):e0242469.
doi: 10.1371/journal.pone.0242469
[19] Scheldeman X, Kyndt T, Geo C, Ming R, Rod D, Van Droogenbroeck B, Moore PH. Vaconcellea, In: Kole C (Ed), Wild Crop Relatives; Genomic and Breeding Resources, 2011. Springer: Heidelber, Germany. p. 213–249.
doi: 10.1007/978-3-642-20447-0
[20] Alvarez E, Chan-León A, Girón-Ramírez A, Fuentes G, Estrella-Maldonado H, Santamaría JM. Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors, Plants 2023, 12:2275, 2023.
doi: 10.3390/plants12152775
[21] Gaete-Eastman C, Figueroa CR, Balbontín C, Moya M, Atkinson RG, Herrera R, Moya-León MA. Expression of an ethylene-related expansin gene during softening of mountain papaya fruit (Vasconcellea pubescens), Postharv Biol and Tech, 53(1–2), 58–65, 2009.
doi: 10.1016/j.postharvbio.2009.03.007
[22] Arizala-Quinto ED, Viteri G, Idrovo-Espín, FM. Partial sequences of the gene that codifies for the transcription factor VPHSFB1 in Vasconcellea pubescens: First report. BAG. Journ of basic and app gen, 30(1): 7-9, 2019.
doi: 10.35407/V.30-1-2019
[23] Cevallos-Vilatuña T, Garzón KA, Idrovo-Espín FM. Internal control gene VpEf1α in Vasconcellea pubescens (chamburo). Rev Am Ciencia y Tecn, 8(1), 1-11, 2019.
[24] Arce M. Normal climática y distribución de la precipitación de la hacienda El Prado-IASA, Bol. Téc. 8, Ser. Zool. 4-5: 126–128, 2009.
[25] Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS. Phytozome: a comparative platform for green plant genomics, Nucleic Acids Res. 40:D1178-86, 2012.
doi: 10.1093/nar/gkr944
[26] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 19,32(5):1792-7, 2004.
doi: 10.1093/nar/gkh340
[27] Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11, Mol. Biol. Evol., 38(7):3022–3027, 2021.
doi: 10.1093/molbev/msab120
[28] Stanke M, Steinkamp R, Stephan Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes, Nucleic Acids Res, 32:W309-W312, 2004.
doi: 10.1093/nar/gkh379
[29] Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator, Gen Res, 14:1188-1190, 2004.
doi: 10.1101/gr.849004
[30] Camejo D, Rodríguez P, Morales M, Dell’Amico J, Torrecillas A, Alarcón J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility, Journ of Plant Phys, 162: 281-289, 2005.
doi: 10.1016/j.jplph.2004.07.014
[31] Aebi H. Catalase in vitro, Methods Enzymology, 105:121-126, 1984.
[32] Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).
doi: 10.1007/BF00018060
[33] Fox J. The R Commander: A Basic Statistics Graphical User Interface to R, Journ of Stat Soft, 14(9):1–42, 2005.
doi: 10.18637/jss.v014.i09
[34] Scheldeman X, Willemen L, Coppens D’Eeckenbrugge G, Romeijn-Peeters E, Restrepo M T, Romero Motoche J, Goetgebeur P. Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America, Biodiv and Cons, 16(6), 1867–1884, 2007.
doi: 10.1007/s10531-006-9086-x
[35] Purwito A, Wattimena GA, Syukur M. Evaluation of potato clones for their adaptation to medium altitude conditions in the tropics, Euphytica, 213:237, 2017.
doi: 10.1007/s10681-017-2022-1
[36] Rykaczewska K. Impact of heat and drought stresses on size and quality of the potato yield, Plant, Soil and Env, 63(1):40-46, 2017.
doi: 10.17221/691/2016-PSE
[37] Le, Thi Man and Tran, Thi Thanh Huyen and Vu, Xuan Quyen and Chu, Duc Ha and Pham, Chau Thuy and Le, Thi Ngoc Quynh and La, Viet Hong and Cao, Phi Bang (2022) Genome-Wide Identification and Analysis of Genes Encoding Putative Heat Shock Protein 70 in Papaya (Carica papaya). Pakistan Journ of Biol Sci. ISSN 1028-8880
[38] Pennacchio, L.A., Olivier, M., Hubacek, J.A., Cohen, J.C., Cox, D.R., Fruchart, J.C., Krauss, R.M., and Rubin, E.M. 2001. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294: 169-173
[39] Carrasco B, Arévalo B, Perez-Diaz R, et al. Descriptive Genomic Analysis and Sequence Genotyping of the Two Papaya Species (Vasconcellea pubescens and Vasconcellea chilensis) Using GBS Tools. Plants (Basel). 2022;11(16):2151.
doi: 10.3390/plants11162151
[40] Evans EA, Ballen FH, Crane JH. An Overview of US Papaya Production, Trade, and Consumption, IFAS, FE914, 2018.
[41] Hagen O, Flück B, Fopp F, Cabral JS, Hartig F, Pontarp M, Rangel TF, Pellissier L. gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity. PLoS Biol. 2021 Jul 12; 19(7):e3001340.
doi: 10.1371/journal.pbio.3001340
[42] Carvalho F, Renner S. A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history, Molec Phyl and Evol, 65(1), 46-53, 2012.
doi: 10.1016/j.ympev.2012.05.019
[43] Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Alam M et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus), Nature, 452(7190), 991–996, 2008.
doi: 10.1038/nature06856
[44] Fourmann M, Barret P, Froger N et al. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet, 105, 1196–1206, 2002.
doi: 10.1007/s00122-002-1040-z
[45] Zhang P, Leu JI, Murphy ME, George DL, Marmorstein R. Crystal structure of the stressinducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. PLoS One, 24;9(7):e103518, 2014.
doi: 10.1371/journal.pone
[46] Tang T, Yu A, Li P, Yang H, Liu G, Liu L. Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses, Scientific Rep, 1–14, 2016.
doi: doi.org/10.1038/srep33650
[47] Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates, Exp Biol Med, 246(12):1419-1434.
doi: 10.1177/1535370221999812
[48] Mandal S, Merz D, Buchsteiner M, Dima R, Rief M, Žoldák G. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change, PNAS, 6;114(23):6040-6045, 2017.
doi: 10.1073/pnas.1619843114
[49] Kumar RR, Goswami S, Gupta R, Verma P, Singh K, Singh JP, Rai RD. The Stress of Suicide: Temporal and Spatial Expression of Putative Heat Shock Protein 70 Protect the Cells from Heat Injury in Wheat (Triticum aestivum), Journ of Plant Growth Reg, 35(1),65–82, 2016.
doi: 10.1007/s00344-015-9508-7
[50] Liu R, Su Z, Zhou H, Huang Q, Fan S, Liu C, Han Y. LsHSP70 is induced by high temperature to interact with calmodulin, leading to higher bolting resistance in lettuce, Sci Rep, 16;10(1):15155, 2020.
doi: 10.1038/s41598-020-72443-3
[51] Al Busaidi K, Farag K. The use of electrolyte leakage procedure in assessing heat and salt tolerance of Ruzaiz date palm (Phoenix dactylifera L.) cultivar regenerated by tissue culture and offshoots and treatments to alleviate the stressful injury, Journ of Hort and For, 7(4):104-111, 2015.
doi: 10.5897/JHF2014.0378
[52] Binelli G, Mascarenhas JP. Arabidopsis: sensitivity of growth to high temperature, Devel Gen, 11, 294–298, 1990.
doi: 10.1002/dvg.1020110408
[53] Wilson RA, Sangha MK, Banga SS, Atwal AK, Gupta S. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea, Journ of Env Biol, 35:383–387, 2014.
doi: 10.1103/PhysRevE.64.0419XX
[54] Craig EA. Hsp70 at the membrane: driving protein translocation, BMC Biol, 16;11, 2018.
doi: 10.1186/s12915-017-0474-3
[55] Millar H, Considine MJ, Day DA, Whelan J. Unraveling the role of mitochondria during oxidative stress in plants, IUBMB Life, 51(4), 201–205, 2001.
doi: 10.1080/152165401753311735
[56] Gupta D, Palma JM, Corpas FJ. Reactive oxygen species and oxidative damage, Toxicol, 54(1):4-5, 2015.
doi: 10.1007/978-3-319-20421-5
[57] Xu Y, Wang J, Bonos SA, Meyer WA, Huang B. Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars, International Journ of Molec Sci, 19(1), 1–21, 2018.
doi: 10.3390/ijms19010116
[58] Alam NB, Ghosh A. Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses, Plant Phys and Bioch, 123:54-64, 2018.
doi: 10.1016/j.plaphy.2017.11.018.
[59] Wang H, Zhang Z, Xu L, Huang X, Pang X. The effect of delay between heat treatment and cold storage on alleviation of chilling injury in banana fruit, J Sci Food Agric, 92(13):2624–9,2012.
doi: 10.1002/jsfa.5676
[60] Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance, Journal of Exp Bot, 58(15–16), 4245–4255, 2007.
doi: 10.1093/jxb/erm284
[61] Gupta NK, Agarwal S, Agarwal VP, Nathawat NS, Gupta S, Singh G. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings, Acta Phys Plant, 35(6), 1837–1842, 2013.
doi: 10.1007/s11738-013-1221-1
[62] Zhu X, Li X, Zou Y, Chen W, Lu W. Cloning, characterization and expression analysis of δ1-pyrroline-5-carboxylate synthetase (P5CS) gene in harvested papaya (Carica papaya) fruit under temperature stress, Food Res Int, 49(1), 272–279, 2012.
doi: 10.1016/j.foodres.2012.08.003
[63] Kantar MB, Nashoba AR, Anderson JE, Blackman BK, Rieseberg LH. The Genetics and Genomics of Plant Domestication, BioScience, 67(11):971-982, 2017.
doi: 10.1093/biosci/bix114
[64] Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC, Van Breusegem F, Mittler R. Extranuclear protection of chromosomal DNA from oxidative stress, Proc Natl Acad Sci, 25;108(4):1711-6, 2011.
doi: 10.1073/pnas.1018359108
[65] Scheepens JF, Deng Y, Bossdorf O. Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana, AoB Plants, 16;10(4):ply043, 2018.
doi: 10.1093/aobpla/ply043
How to Cite
Idrovo, F., & Cevallos-Vilatuña, T. (2023). Partial sequence analysis and relative expression of the HSP70 gene of Vasconcellea pubescens. Universitas Scientiarum, 28(3), 279–298. https://doi.org/10.11144/Javeriana.SC283.psaa
Section
Molecular Biology