Black-eyed Susan vine (Thunbergia alata): chemical and antifungal potential evaluation of an invasive plant species in Colombia
##plugins.themes.bootstrap3.article.details##
Thunbergia alata (Black-eyed Susan) is a plant species from East Africa and grows in tropical regions worldwide, including Colombia, being considered an invasive species in some countries. Even though it is used by local communities to treat several illnesses, including malaria, there are few biological and chemical studies on T. alata. Therefore, this study aimed to explore the chemical composition and in vitro antimycotic (against Candida strains) activity of T. alata crude ethanolic stem and leaf extracts. This was achieved via phytochemical analyses and chromatographic profiling (HPTLC, UPLC-DAD, and LC-MS). A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against selected Candida strains. Results showed the presence of saponins, terpenes, and flavonoids in the T. alata crude ethanolic stem and leaf extracts, although rutin and chlorogenic acid were the main components of stem and leaf extracts, respectively. Concerning biological assays, T. alata leaf extracts demonstrated moderate antimycotic activity, with MIC values between 5:00 mg mL-1 and 1:25 mg mL-1 against C. albicans and C. auris strains. The results indicate that T. alata extracts, including some of their major identified compounds, possess promising antifungal properties against two significant microorganisms.
Antifungal activity; Candida albicans; Candida auris; HPTLC, LC-MS, Thunbergia alata, UPLC.
Doi: 10.1021/acs.jnatprod.9b01285
[2] Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation, and characterization of bioactive compounds from plants’ extracts. African J Tradit Complement Altern Med 8(1):1–10, 2011.
Doi: 10.4314/ajtcam.v8i1.60483
[3] Friedman DZP, Schwartz IS. Emerging fungal infections: New patients, new patterns, and new pathogens. J Fungi 5(3):67, 2019.
Doi: 10.3390/jof5030067
[4] Pereira RJ, das Graças Cardoso M. Metabólitos secundários vegetais e benefícios antioxidantes. J Biotechnol Biodivers 3(4):146–52, 2012.
Doi: 10.17648/diversitas-journalv1i2.332
[5] Teng H, Lee WY. Antibacterial and antioxidant activities and chemical compositions of volatile oils extracted from Schisandra chinensis Baill. seeds using simultaneous distillation extraction method, and comparison with Soxhlet and microwave-assisted extraction. Biosci Biotechnol Biochem 78(1):79–85, 2014.
Doi: 10.1080/09168451.2014.877815
[6] Pedroso R dos S, Balbino BL, Andrade G, Dias MCPS, Alvarenga TA, Pedroso RCN, Pimenta LP, Lucarini R, Pauletti PM, Januário AH. In vitro and in vivo anti-Candida spp. activity of plant-derived products. Plants 8(11):494, 2019.
Doi: 10.3390/plants8110494
[7] Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol 49(2):171–7, 2011. Doi: 10.1007/s12275-011-1064-7
[8] Cortés JA, Ruiz J, Melgarejo Moreno L, Lemos E V. Candidemia in Colombia. Biomedica40(1):195–207, 2020.
Doi: 10.7705/biomedica.4400
[9] Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 109(7):309–18, 2015.
Doi: 10.1179/2047773215Y.0000000030
[10] Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog 16(10):e1008921, 2020.
Doi:10.1371/journal.ppat.1008921
[11] Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP. Simultaneous emergence of
multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64(2):134–40, 2017.
Doi: 10.1093/cid/ciw691
[12] Parra-Giraldo CM, Valderrama SL, Cortes-Fraile G, Garzón JR, Ariza BE, Morio F, Linares-Linares MY, Ceballos-Garzón A, de la Hoz A, Hernandez C, Alvarez-Moreno C, Le Pape P. First report of sporadic cases of Candida auris in Colombia. Int J Infect Dis 69:63–7, 2018.
Doi: 10.1016/j.ijid.2018.01.034
[13] Alfouzan W, Ahmad S, Dhar R, Asadzadeh M, Almerdasi N, Abdo NM, Joseph L, de Groot T, Alali WQ, Khan Z, Meis JF, Al-Rashidi MR. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J Fungi 6(4):1–18, 2020.
Doi: 10.3390/jof6040307
[14] Escandón P, Cáceres DH, Espinosa-Bode A, Rivera S, Armstrong P, Vallabhaneni S, Berkow EL, Lockhart SR, Chiller T, Jackson BR, Duarte C. Notes from the Field : Surveillance for Candida auris — Colombia, September 2016–May 2017. Morb Mortal Wkly Rep
67(15):459–60, 2018.
Doi: 10.15585/mmwr.mm6715a6
[15] Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S, Brüggemann R. Antifungal drugs: What brings the future? Medical Mycology, vol. 57, Oxford University Press, S328–43, 2019.
Doi: 10.1093/mmy/myz012
[16] Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4(5):a019703, 2014.
Doi: 10.1101/cshperspect.a019703
[17] Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M, Rollinger JM, Barreca D, Weckwerth W, Bauer R, Bayer EA, Majeed M, Bishayee A, Bochkov V, Bonn GK, Braidy N, Bucar F, Cifuentes A, D’Onofrio G, Bodkin M, Diederich M, Dinkova-Kostova AT, Efferth T, El Bairi K, Arkells N, Fan TP, Fiebich BL, Freissmuth M, Georgiev MI, Gibbons S, Godfrey KM, Gruber CW, Heer J, Huber LA, Ibanez E, Kijjoa A, Kiss AK, Lu A, Macias FA, Miller MJS, Mocan A, Müller R, Nicoletti F, Perry G, Pittalà V, Rastrelli L, Ristow M, Russo GL,
Silva AS, Schuster D, Sheridan H, Skalicka-Woźniak K, Skaltsounis L, Sobarzo-Sánchez E, Bredt DS, Stuppner H, Sureda A, Tzvetkov NT, Vacca RA, Aggarwal BB, Battino M, Giampieri F, Wink M, Wolfender JL, Xiao J, Yeung AWK, Lizard G, Popp MA, Heinrich M, Berindan-Neagoe I, Stadler M, Daglia M, Verpoorte R, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–16, 2021.
Doi:10.1038/s41573-020-00114-z
[18] Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta - Gen Subj 1830(6):3670–95, 2013.
Doi: 10.1016/j.bbagen.2013.02.008
[19] Housti F, Andary C, Gargadennec A, Amssa M. Effects of wounding and salicylic acid on hydroxycinnamoylmalic acids in Thunbergia alata. Plant Physiol Biochem 40(9):761–9, 2002.
Doi: 10.1016/S0981-9428(02)01427-4
[20] Jenifer S, Priya S, Laveena DK, Singh SJS, Jeyasree J. Sensitivity patterns of some flowering plants against Salmonella typhi and Pseudomonas aeruginosa. J Pharm Sci 3:1212–20, 2014.
Doi: 10.24297/jns.v3i1.5018
[21] Vlietinck AJ, Van Hoof L, Totté J, Lasure A, Berghe D Vanden, Rwangabo PC, Mvukiyumwami J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol 46(1):31–47, 1995.
Doi: 10.1016/0378-8741(95)01226-4
[22] Hamill FA, Apio S, Mubiru NK, Bukenya-Ziraba R, Mosango M, Maganyi OW, Soejarto DD. Traditional herbal drugs of Southern Uganda, II: Literature analysis and antimicrobial assays. J Ethnopharmacol 84(1):57–78, 2003.
Doi: 10.1016/S0378-8741(02)00289-1
[23] Okello S V, Nyunja RO, Netondo GW, Onyango JC. Ethnobotanical study of medicinal plants used by sabaots of mt. Elgon kenya. African J Tradit Complement Altern Med 7(1):1–10, 2010.
Doi: 10.4314/ajtcam.v7i1.57223
[24] Starr F, Starr K, Loope L. Thunbergia alata. Plants Hawaii Haleakala F Stn, 2003.
[25] Batianoff GN, Butler DW. Impact assessment and analysis of sixty-six priority invasive weeds in south-east Queensland. Plant Prot Q 18(1):11–7, 2003.
Doi: 10.3407/rpn.v5i2.6913
[26] Lockwood JL, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–8, 2005.
Doi: 10.1016/j.tree.2005.02.004
[27] Quijano-Abril MA, Castaño-López M de los Á, Marín-Henao D, Sánchez-Gómez D, Rojas-Villa JM, Sierra-Escobar J. Functional traits of the invasive species Thunbergia alata (Acanthaceae) and its importance in the adaptation to Andean forests. Acta Bot Mex (128),
2021.
Doi: 10.21829/ABM128.2021.1870
[28] Damtoft S, Frederiksen LB, Jensen SR. Biosynthesis of iridoid glucosides in Thunbergia alata. Phytochemistry 37(6):1599–603, 1994. Doi: 10.1016/S0031-9422(00)89574-6
[29] Schultz DJ, Ohlrogge JB. Biosynthesis of triacylglycerol in Thunbergia alata: Additional evidence for involvement of phosphatidylcholine in unusual monoenoic oil production. Plant Physiol Biochem 38(3):169–75, 2000.
Doi: 10.1016/S0981-9428(00)00739-7
[30] Sanabria-Galindo A, López SI, Gualdrón R. Estudio fitoquímico preliminar y letalidad sobre Artemia salina de plantas colombianas. Rev Colomb ciencias químico-farmacéuticas 26(1), 1997.
Doi: 10.15446/rcciquifa
[31] Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi - M38-A2. vol. 28
[32] Bravo-Chaucanés CP, Vargas-Casanova Y, Chitiva-Chitiva LC, Ceballos-Garzon A, Modesti-Costa G, Parra-Giraldo CM. Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting growth, yeast-hyphal transition, virulent enzymes, and biofilm formation. J Fungi 8(8):784, 2022.
Doi: 10.3390/jof8080784
[33] Bagiu RV, Vlaicu B, Butnariu M. Chemical composition and in Vitro antifungal activity screening of the Allium ursinum L. (Liliaceae). Int J Mol Sci 13(2):1426–36, 2012.
Doi: 10.3390/ijms13021426DOI: /10.1021/np960627o
[34] Wagner H, Blandt S, Zgainski E, Springer-Verlang. Plant drug analysis: A Thin Layer Chromatography Atlas. 1st ed. Munchen, Germany: Springer Science & Business Media
[35] Sultana K, Chatterjee S, Roy A, Chandra I. An Overview on Ethnopharmacological and Phytochemical properties of Thunbergia sp. Med Aromat Plants 04(05):1–6, 2015.
Doi: 10.4172/2167-0412.1000217
[36] Hedaginal BR, Taranath TC. Characterization and antimicrobial activity of biogenic silver nano-particles using leaf extract of Thunbergia alata Bojer ex sims. Int J Pharm Sci Res 8(5):2070–81, 2017.
Doi: 10.13040/IJPSR.0975-8232.8(5).2070-81
[37] Ibrahim MT, Sleem AA. Phytochemical and biological investigation of Thunbergia grandiflora. J Pharmacogn Phytochem 6(2):43–51, 2017.
Doi: https://dx.doi.org/10.22271/phyto
[38] Sung WS, Lee DG. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem 82(1):219–26, 2010.
Doi: 10.1351/PAC-CON-09-01-08
[39] Yun JE, Lee DG. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans. Biochim Biophys Acta - Gen Subj 1861(3):585–92, 2017.
Doi: 10.1016/j.bbagen.2016.12.026
[40] Duque CM, Sanchez DM, Gaviria A, Acosta AV, Gómez B, Gómez OM, Giraldo AR, Hernandez O. Characterization of Candida spp isolated from urine cultures of Medellín. Infectio 24(4):217–23, 2020.
Doi: 10.22354/in.v24i4.879
[41] Karthikeyan G, Geetha R V, Thangavelu L. Antimitotic activity of Piper nigrum on clinical isolates of Candida. Int J Res Pharm Sci 10(2):1167–71, 2019.
Doi: 10.26452/ijrps.v10i2.400
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.