Abstract
Thunbergia alata (black-eyed Susan vine) is a plant species native to East Africa. It is widely cultivated throughout tropical regions of the world, considered a high-risk invasive species in some countries, including Colombia. Communities use this species for malaria treatment. Nevertheless, the chemical and biological studies on T. alata involved limited number of reports. For this reason, the present research aims to explore the chemical composition and in vitro antifungal activity of T. alata crude ethanolic stem and leaf extracts. For this purpose, preliminary phytochemical analysis and chromatographic profiles such as HPTLC, UPLC, and LC-MS were used. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi. The results indicated the presence of terpenes, saponins and flavonoids. The presence of chlorogenic acid was identified in the leaves and rutin in the stems. Regarding biological assays, the T. alata leaf extracts evaluated demonstrated moderate activities with MIC values between 5 -1.25 mg/mL against C. albicans and C. auris strains. The results showed T. alata extracts possess interesting antifungal properties against two important microorganism, with some mayor compounds identified.
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly fourdecades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803, 2020.
Doi: 10.1021/acs.jnatprod.9b01285
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation, and characterization of bioactive compounds from plants’ extracts. African J Tradit Complement Altern Med 8(1):1–10, 2011.
Doi: 10.4314/ajtcam.v8i1.60483
Friedman DZP, Schwartz IS. Emerging fungal infections: New patients, new patterns, and new pathogens. J Fungi 5(3):67, 2019.
Doi: 10.3390/jof5030067
Pereira RJ, das Graças Cardoso M. Metabólitos secundários vegetais e benefícios antioxidantes. J Biotechnol Biodivers 3(4):146–52, 2012.
Doi: 10.17648/diversitas-journalv1i2.332
Teng H, Lee WY. Antibacterial and antioxidant activities and chemical compositions of volatile oils extracted from Schisandra chinensis Baill. seeds using simultaneous distillation extraction method, and comparison with Soxhlet and microwave-assisted extraction. Biosci Biotechnol Biochem 78(1):79–85, 2014.
Doi: 10.1080/09168451.2014.877815
Pedroso R dos S, Balbino BL, Andrade G, Dias MCPS, Alvarenga TA, Pedroso RCN, Pimenta LP, Lucarini R, Pauletti PM, Januário AH. In vitro and in vivo anti-Candida spp. activity of plant-derived products. Plants 8(11):494, 2019.
Doi: 10.3390/plants8110494
Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol 49(2):171–7, 2011. Doi: 10.1007/s12275-011-1064-7
Cortés JA, Ruiz J, Melgarejo Moreno L, Lemos E V. Candidemia in Colombia. Biomedica40(1):195–207, 2020.
Doi: 10.7705/biomedica.4400
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 109(7):309–18, 2015.
Doi: 10.1179/2047773215Y.0000000030
Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog 16(10):e1008921, 2020.
Doi:10.1371/journal.ppat.1008921
Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP. Simultaneous emergence of
multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64(2):134–40, 2017.
Doi: 10.1093/cid/ciw691
Parra-Giraldo CM, Valderrama SL, Cortes-Fraile G, Garzón JR, Ariza BE, Morio F, Linares-Linares MY, Ceballos-Garzón A, de la Hoz A, Hernandez C, Alvarez-Moreno C, Le Pape P. First report of sporadic cases of Candida auris in Colombia. Int J Infect Dis 69:63–7, 2018.
Doi: 10.1016/j.ijid.2018.01.034
Alfouzan W, Ahmad S, Dhar R, Asadzadeh M, Almerdasi N, Abdo NM, Joseph L, de Groot T, Alali WQ, Khan Z, Meis JF, Al-Rashidi MR. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J Fungi 6(4):1–18, 2020.
Doi: 10.3390/jof6040307
Escandón P, Cáceres DH, Espinosa-Bode A, Rivera S, Armstrong P, Vallabhaneni S, Berkow EL, Lockhart SR, Chiller T, Jackson BR, Duarte C. Notes from the Field : Surveillance for Candida auris — Colombia, September 2016–May 2017. Morb Mortal Wkly Rep
(15):459–60, 2018.
Doi: 10.15585/mmwr.mm6715a6
Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S, Brüggemann R. Antifungal drugs: What brings the future? Medical Mycology, vol. 57, Oxford University Press, S328–43, 2019.
Doi: 10.1093/mmy/myz012
Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4(5):a019703, 2014.
Doi: 10.1101/cshperspect.a019703
Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M, Rollinger JM, Barreca D, Weckwerth W, Bauer R, Bayer EA, Majeed M, Bishayee A, Bochkov V, Bonn GK, Braidy N, Bucar F, Cifuentes A, D’Onofrio G, Bodkin M, Diederich M, Dinkova-Kostova AT, Efferth T, El Bairi K, Arkells N, Fan TP, Fiebich BL, Freissmuth M, Georgiev MI, Gibbons S, Godfrey KM, Gruber CW, Heer J, Huber LA, Ibanez E, Kijjoa A, Kiss AK, Lu A, Macias FA, Miller MJS, Mocan A, Müller R, Nicoletti F, Perry G, Pittalà V, Rastrelli L, Ristow M, Russo GL,
Silva AS, Schuster D, Sheridan H, Skalicka-Woźniak K, Skaltsounis L, Sobarzo-Sánchez E, Bredt DS, Stuppner H, Sureda A, Tzvetkov NT, Vacca RA, Aggarwal BB, Battino M, Giampieri F, Wink M, Wolfender JL, Xiao J, Yeung AWK, Lizard G, Popp MA, Heinrich M, Berindan-Neagoe I, Stadler M, Daglia M, Verpoorte R, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–16, 2021.
Doi:10.1038/s41573-020-00114-z
Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta - Gen Subj 1830(6):3670–95, 2013.
Doi: 10.1016/j.bbagen.2013.02.008
Housti F, Andary C, Gargadennec A, Amssa M. Effects of wounding and salicylic acid on hydroxycinnamoylmalic acids in Thunbergia alata. Plant Physiol Biochem 40(9):761–9, 2002.
Doi: 10.1016/S0981-9428(02)01427-4
Jenifer S, Priya S, Laveena DK, Singh SJS, Jeyasree J. Sensitivity patterns of some flowering plants against Salmonella typhi and Pseudomonas aeruginosa. J Pharm Sci 3:1212–20, 2014.
Doi: 10.24297/jns.v3i1.5018
Vlietinck AJ, Van Hoof L, Totté J, Lasure A, Berghe D Vanden, Rwangabo PC, Mvukiyumwami J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol 46(1):31–47, 1995.
Doi: 10.1016/0378-8741(95)01226-4
Hamill FA, Apio S, Mubiru NK, Bukenya-Ziraba R, Mosango M, Maganyi OW, Soejarto DD. Traditional herbal drugs of Southern Uganda, II: Literature analysis and antimicrobial assays. J Ethnopharmacol 84(1):57–78, 2003.
Doi: 10.1016/S0378-8741(02)00289-1
Okello S V, Nyunja RO, Netondo GW, Onyango JC. Ethnobotanical study of medicinal plants used by sabaots of mt. Elgon kenya. African J Tradit Complement Altern Med 7(1):1–10, 2010.
Doi: 10.4314/ajtcam.v7i1.57223
Starr F, Starr K, Loope L. Thunbergia alata. Plants Hawaii Haleakala F Stn, 2003.
Batianoff GN, Butler DW. Impact assessment and analysis of sixty-six priority invasive weeds in south-east Queensland. Plant Prot Q 18(1):11–7, 2003.
Doi: 10.3407/rpn.v5i2.6913
Lockwood JL, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–8, 2005.
Doi: 10.1016/j.tree.2005.02.004
Quijano-Abril MA, Castaño-López M de los Á, Marín-Henao D, Sánchez-Gómez D, Rojas-Villa JM, Sierra-Escobar J. Functional traits of the invasive species Thunbergia alata (Acanthaceae) and its importance in the adaptation to Andean forests. Acta Bot Mex (128),
Doi: 10.21829/ABM128.2021.1870
Damtoft S, Frederiksen LB, Jensen SR. Biosynthesis of iridoid glucosides in Thunbergia alata. Phytochemistry 37(6):1599–603, 1994. Doi: 10.1016/S0031-9422(00)89574-6
Schultz DJ, Ohlrogge JB. Biosynthesis of triacylglycerol in Thunbergia alata: Additional evidence for involvement of phosphatidylcholine in unusual monoenoic oil production. Plant Physiol Biochem 38(3):169–75, 2000.
Doi: 10.1016/S0981-9428(00)00739-7
Sanabria-Galindo A, López SI, Gualdrón R. Estudio fitoquímico preliminar y letalidad sobre Artemia salina de plantas colombianas. Rev Colomb ciencias químico-farmacéuticas 26(1), 1997.
Doi: 10.15446/rcciquifa
Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi - M38-A2. vol. 28
Bravo-Chaucanés CP, Vargas-Casanova Y, Chitiva-Chitiva LC, Ceballos-Garzon A, Modesti-Costa G, Parra-Giraldo CM. Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting growth, yeast-hyphal transition, virulent enzymes, and biofilm formation. J Fungi 8(8):784, 2022.
Doi: 10.3390/jof8080784
Bagiu RV, Vlaicu B, Butnariu M. Chemical composition and in Vitro antifungal activity screening of the Allium ursinum L. (Liliaceae). Int J Mol Sci 13(2):1426–36, 2012.
Doi: 10.3390/ijms13021426DOI: /10.1021/np960627o
Wagner H, Blandt S, Zgainski E, Springer-Verlang. Plant drug analysis: A Thin Layer Chromatography Atlas. 1st ed. Munchen, Germany: Springer Science & Business Media
Sultana K, Chatterjee S, Roy A, Chandra I. An Overview on Ethnopharmacological and Phytochemical properties of Thunbergia sp. Med Aromat Plants 04(05):1–6, 2015.
Doi: 10.4172/2167-0412.1000217
Hedaginal BR, Taranath TC. Characterization and antimicrobial activity of biogenic silver nano-particles using leaf extract of Thunbergia alata Bojer ex sims. Int J Pharm Sci Res 8(5):2070–81, 2017.
Doi: 10.13040/IJPSR.0975-8232.8(5).2070-81
Ibrahim MT, Sleem AA. Phytochemical and biological investigation of Thunbergia grandiflora. J Pharmacogn Phytochem 6(2):43–51, 2017.
Doi: https://dx.doi.org/10.22271/phyto
Sung WS, Lee DG. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem 82(1):219–26, 2010.
Doi: 10.1351/PAC-CON-09-01-08
Yun JE, Lee DG. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans. Biochim Biophys Acta - Gen Subj 1861(3):585–92, 2017.
Doi: 10.1016/j.bbagen.2016.12.026
Duque CM, Sanchez DM, Gaviria A, Acosta AV, Gómez B, Gómez OM, Giraldo AR, Hernandez O. Characterization of Candida spp isolated from urine cultures of Medellín. Infectio 24(4):217–23, 2020.
Doi: 10.22354/in.v24i4.879
Karthikeyan G, Geetha R V, Thangavelu L. Antimitotic activity of Piper nigrum on clinical isolates of Candida. Int J Res Pharm Sci 10(2):1167–71, 2019.
Doi: 10.26452/ijrps.v10i2.400

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Miguel Ángel Vanegas Romero, Luis Carlos Chitiva, Claudia Patrícia Bravo-Chaucanés, Andrea Ximena Hernández, Claudia Marcela Parra-Giraldo, Geison Modesti Costa