Published Dec 12, 2023



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Edgardo Meza-Fuentes

Johana Rodríguez Ruíz

Edinson Castellar Arroyo

Maria Rangel

Eduardo Espinosa Fuentes

##plugins.themes.bootstrap3.article.details##

Abstract

Nickel-based catalysts are of great importance for the generation of hydrogen from natural gas. Within this process, the conditions in which commercial NiO/Al2O3 is converted to Ni0/Al2O3 catalyst should be further investigated. A widely used technique to identify Ni2+ reduction conditions and the different compounds or types of particles in which this element is present is temperature-programmed reduction. In this work, the type of nickel oxide particles occurring on Al2O3 and ZnO-Al2O3-based supports were studied by different techniques, such as energy-dispersive X-ray spectroscopy, FTIR, the BET method, X-ray diffraction (XRD), and Temperature Programmed Reduction (TPR). All materials were evaluated in the water gas shift reaction (WGS), and the influence of their characteristics on the catalytic activity was assessed. Solids were prepared at different temperatures and Ni/Zn molar ratios. The results showed the presence of NiO in all materials, as well as the presence of ZnO, NiAl2O4, and ZnAl2O4 in materials prepared at higher temperatures. In all the materials calcined at the lowest temperature, the formation of NiO particles that fail to interact with the supports was prioritized. As the calcination temperature increased, NiO aggregates were formed, which, to a greater degree, interacted with the supports, whereby nickel aluminate was detected in all materials prepared at 750 °C. Zinc increased the selectivity but decreased specific surface area and activity through the WGS reaction. The solid labeled AZ15-500 showed higher activity and selectivity, reaching values of 100% for the water gas shift reaction.

Keywords

catalysis , NiO particles, temperature programmed reduction, Temperature effect, water gas shift reaction

References
[1] Meza E, Faro A, de-Freitas T, Assaf J, Rangel M. A comparison between copper and nickelbased catalysts obtained from hydrotalcite-like precursors for WGSR, Catalysis Today, 171: 290-296, 2011.
doi: 10.1016/j.cattod.2011.03.082
[2] Meza-Fuentes E, Cadete-Santos F, Prakash S, Costa-Faro A, de Freitas-Silva T, Mansur-Assaf J, Rangel M. The effect of metal content on nickel-based catalysts obtained from hydrotalcites for WGSR in one step, International Journal of Hydrogen Energy, 39: 1-14, 2014.
doi: 10.1016/j.ijhydene.2013.10.114
[3] Sewell GS, Van-Steen E, O'Connor CT. Use of TPR/TPO for characterization of supported cobalt catalysts, Catalysis Letter, 37: 255-260, 1996.
doi:10.1007/BF00807763
[4] Li P, Chen Y, Zhang C, Huang B, Liu X, Liu T, Jiang Z, Li C. Highly selective hydrodesulfurization of gasoline on unsupported Co-Mo sulfide catalysts: Effect of MoS2 morphology, Applied Catalysis. A-General, 533: 99-108, 2017.
doi: 10.1016/j.apcata.2017.01.009
[5] Scheffer B, Dekker NJ, Mangnus PJ, Moulijn JA. A temperature-programmed reduction study of sulfided Co-Mo/Al2O3 hydrodesulfurization catalysts. Journal of Catalysis. 121: 31-46, 1990.
doi: 10.1016/0021-9517(90)90214-5
[6] Mahieu C, Puzenat E, Geantet C, Cardenas L, Afanasiev P. Titania-Supported transition metals sulfides as photocatalysts for hydrogen production from propan-2-ol and methanol, International Journal of Hydrogen Energy, 44: 18038-18049, 2019.
doi:10.1016/j.ijhydene.2019.05.080
[7] Shimoda N, Koide N, Kasahara M, Mukoyama T, Satokawa S. Development of oxidesupported nickel-based catalysts for catalytic decomposition of dimethyl sulfide, Fuel, 232:485-494, 2018.
doi:10.1016/j.fuel.2018.06.009
[8] Jiang Z, Liao X, Zhao Y. Comparative study of the dry reforming of methane on fluidised aerogel and xerogel Ni/Al2O3 catalysts. Applied Petrochemical Research. 3: 91-99, 2013.
doi:10.1007/s13203-013-0035-9
[9] Touahra F, Sehailia M, Ketir W, Bachari K, Chebout R, Trari M, Cherifi O, Halliche D. Effect of the Ni/Al ratio of hydrotalcite-type catalysts on their performance in the methane dry reforming process. Applied Petrochemical Research, 6: 1-13, 2016.
doi:10.1007/s13203-015-0109-y
[10] Navarro MV, Plou J, López JM, Grasa G, Murillo R. Effect of oxidation-reduction cycles on steam-methane reforming kinetics over a nickel-based catalyst. International Journal of Hydrogen Energy, 44:12617-12627, 2019.
doi:10.1016/j.ijhydene.2018.12.056
[11] Jankovic B, Adnadevic B, Mentus S. The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chemical Engineering Science, 63: 567-575, 2008. doi:10.1016/j.ces.2007.09.043
[12] Berrocal G, da-Silva A, Assaf J, Albornoz A, Rangel MC. Novel supports for nickelbased catalysts for the partial oxidation of methane, Catalysis Today. 149: 240-247, 2010.
doi:10.1016/j.cattod.2009.06.005
[13] Ma Q, Guo L, Fang Y, Li H, Zhang J, Zhao T, Yang G, Yoneyama Y, Tsubaki N. Combined methane dry reforming and methane partial oxidization for syngas production over high dispersion Ni based mesoporous catalyst, Fuel Processing Technology, 188: 98-104, 2019.
doi:10.1016/j.fuproc.2019.02.013
[14] Di Giuliano A, Gallucci K, Foscolo PU, Courson C. Effect of Ni precursor salts on Nimayenite catalysts for steam methane reforming and on Ni-CaO-mayenite materials for sorption enhanced steam methane reforming. International Journal of Hydrogen Energy, 44:6461-6480, 2019.
doi:10.1016/j.ijhydene.2019.01.131
[15] Pashchenko D. Experimental investigation of synthesis gas production by methane reforming with flue gas over a NiO-Al2O3 catalyst: Reforming characteristics and pressure drop. International Journal of Hydrogen Energy, 44:7073-7082, 2019.
doi:10.1016/j.ijhydene.2019.01.250
[16] Scheffer B, Molhoek P, Moulijn J. Temperature-Programmed Reduction of NiOWO3/Al2O3 Hydrodesulphurization Catalysts. Applied Catalysis, 46: 11-30, 1989.
doi:10.1016/S0166-9834(00)81391-3
[17] Mile B, Stirling D, Zammitt MA, Lovell A, Webb M. TPR studies of the effects of preparation conditions on supported nickel catalysts. Journal of Molecular Catalysis, 62: 179-198, 1990.
doi:10.1016/0304-5102(90)85212-Z
[18] Li C, Chen Y. Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method. Thermochimica Acta, 256:457-465, 1995.
doi:10.1016/0040-6031(94)02177-P
[19] Zhou Z, Han L, Bollas G. Kinetics of NiO reduction by H2 and Ni oxidation at conditions relevant to chemical-looping combustion and reforming. International Journal of Hydrogen Energy, 39: 8535-8556, 2014.
doi:10.1016/j.ijhydene.2014.03.161
[20] Wang CB, Gau GY, Gau SJ, Tang CW, Bi JL. Preparation and characterization of nanosized nickel oxide. Catalysis Letters 101:241-247, 2005.
doi:10.1007/s10562-005-4899-x
[21] Jafarbegloo M, Tarlani A, Mesbah W, Muzart J, Sahebdelfar S. NiO–MgO solid solution prepared by sol–gel method as precursor for Ni/MgO methane dry reforming catalyst: effect of calcination temperature on catalytic performance. Catalysis Letter, 146:238-248, 2016.
doi:10.1007/s10562-015-1638-9
[22] Farahani MD, Valand J, Mahomed AS, Friedrich HB. A Comparative Study of NiO/Al2O3 Catalysts Prepared by Different Combustion Techniques for Octanal Hydrogenation. Catalysis Letter. 146: 2441-2449, 2016.
doi:10.1007/s10562-016-1858-7
[23] Delgado D, Sanchís R, Cecilia JA, Rodríguez-Castellón E, Caballero A, Solsona B, López Nieto JM. Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today. 333: 10-16, 2019.
doi:10.1016/j.cattod.2018.07.010
[24] Qin H, Guo C, Wu Y, Zhang J (2014) Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation. Korean Journal of Chemical Engineering, 31: 1168-1173, 2014.
doi:10.1007/s11814-014-0013-7
[25] Han SW, Jeong MG, Kim H, Seo HO, Kim YD. Use of NiO/SiO2 catalysts for toluene total oxidation: Catalytic reaction at lower temperatures and repeated regeneration. Chinese Journal of Catalysis, 37: 1931-1940, 2016.
doi:10.1016/S1872-2067(16)62514-7
[26] Fukudome K, Kanno A, Ikenaga N, Miyake T, Suzuki T. The oxidative dehydrogenation of propane over NiO–ZrO2 catalyst. Catalysis Letter, 141: 68-77, 2011.
doi:10.1007/s10562-010-0461-6
[27] Jitianu M, Jitianu A, Zaharescu M, Crisan D, Rodica M. IR structural evidence of hydrotalcites derived oxidic forms. Vibrational Spectroscopy, 22: 75-86, 2002.
doi:10.1016/S0924-2031(99)00067-3
[28] Milanović M, Obrenović Z, Stijepović I, Nikolić LM. Nanocrystalline boehmite obtained at room temperature. Ceramics International, 44: 12917–12920, 2018.
doi:10.1016/j.ceramint.2018.04.103
[29] Li DY, Lin YS, Li YC, Shieh DL, Lin JL. Synthesis of mesoporous pseudoboehmite and alumina templated with 1-hexadecyl-2,3-dimethyl-imidazolium chloride. Microporous and Mesoporous Materials, 108: 276–282, 2008.
doi:10.1016/j.micromeso.2007.04.009
[30] Liu C, Shih K, Gao Y, Li F, Wei L. Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina. Journal of Soils and Sediments, 12: 724-733, 2012.
doi:10.1007/s11368-012-0506-0
[31] Lu W, Lu G, Liu X, Guo G, Wang J, Guo Y. Effects of support and modifiers on catalytic performance of zinc oxide for hydrogenation of methyl benzoate to benzaldehyde. Materials Chemistry and Physics, 82: 120-127, 2003.
doi:10.1016/S0254-0584(03)00207-4
[32] Gonçalves A, Costa M, Zhang L, Ciesielczyk F, Jaroniec M. One-pot synthesis of MeAl2O4 (Me = Ni, Co, or Cu) supported on γ‑Al2O3 with ultralarge mesopores: Enhancing interfacial defects in γ‑Al2O3 to facilitate the formation of spinel structures at lower temperatures. Chemistry of Material. 30: 436-446, 2018.
doi:10.1021/acs.chemmater.7b04353
[33] Srinatha N, Satyanarayana S, Suriyamurthy N, Rudresh KJ, Suresh MR, Madhu A, Angadi B. New fuel governed combustion synthesis and improved luminescence in nanocrystalline Cr3+ doped ZnAl2O4 particles. Results in Optics. 8: 100242, 2022.
doi:10.1016/j.rio.2022.100242
[34] Fahoul Y, Zouheir M, Tanji K, Kherbeche A. Synthesis of a novel ZnAl2O4/CuS nanocomposite and its characterization for photocatalytic degradation of acid red 1 under UV illumination. Journal of Alloys and Compounds, 889: 161708, 2021. doi:10.1016/j.jallcom.2021.161708
[35] Meza E & Rangel M. Síntesis de catalizadores de Ni/ZnO/Al2O3 para la reacción WGS a través del estudio de las propiedades estructurales y catalíticas de Ni/ZnO y Ni/Al2O3. Revista Colombiana de Química, 40: 105-123, 2011.
doi:10.15446/rev.colomb.quim
[36] Meza-Fuentes E, Rodriguez-Ruiz J, Solano-Polo C, Rangel MC, Faro A. Monitoring the structural and textural changes of Ni-Zn-Al hydrotalcites under heating. Thermochimica Acta. 687: 178594, 2020.
doi:10.1016/j.tca.2020.178594
[37] Hoffer BW, Van-Langeveld AD, Janssens JP, Bonné RLC, Lok CM, Moulijn JA. Stability of highly dispersed Ni/Al2O3 catalysts: Effects of pretreatment. Journal of Catalysis, 192:432-440, 2000.
doi:10.1006/jcat.2000.2867
[38] Mangnus PJ, Bos A, Moulijn JÁ. Temperature-programmed reduction of oxidic and sulfidic alumina-supported NiO, WO3, and NiO-WO3 catalysts. Journal of Catalysis, 146: 437-448, 1994.
doi:10.1006/jcat.1994.1081
[39] Ding C, Liu W, Wang J, Liu P, Zhang K, Gao X, Ding G, Liu S, Han Y, Ma X. One step synthesis of mesoporous NiO–Al2O3 catalyst for partial oxidation of methane to syngas: The role of calcination temperature. Fuel, 162: 148-154, 2015.
doi:10.1016/j.fuel.2015.09.002
[40] Lundegaard LF, Tiruvalam RR, Tyrsted C, Carlsson A, Morales-Cano F, Ovesena CV. Migrating Al species hindering NiO reduction on Al containing catalyst carriers. Catalysis Today, 272: 25-31, 2016.
doi:10.1016/j.cattod.2015.08.055
[41] Richardson JT, Twigg MV. Reduction of impregnated NiO/α-Al2O3 association of Al3+ions with NiO. Applied Catalysis A: General. 167: 57-64, 1998.
doi:10.1016/S0926-860X(97)00298-6
[42] Meza-Fuentes E, Rodriguez-Ruiz J, Rangel M. Characteristics of NiO present in solids obtained from hydrotalcites based on Ni/Al and Ni-Zn/Al. DYNA. 86: 58-65, 2019.
doi:10.15446/dyna.v86n210.78559
How to Cite
Meza-Fuentes, E., Rodríguez Ruíz, J., Castellar Arroyo, E., Rangel, M., & Espinosa Fuentes, E. (2023). Study of NiO/Al2O3 and NiO/Zn-Al2O3 catalysts for water gas shift reaction. Universitas Scientiarum, 28(3), 316–335. https://doi.org/10.11144/Javeriana.SC283.sona
Section
Chemistry