Published Feb 10, 2025



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Melissa Arango-Gil https://orcid.org/0009-0004-2337-1442

Marcela Mora-López https://orcid.org/0000-0002-7706-0883

Elizabeth Correa-Gómez https://orcid.org/0000-0001-7659-7518

Victor Manuel Osorio-Echeverri https://orcid.org/0000-0002-9134-2713

##plugins.themes.bootstrap3.article.details##

Abstract

Most fungal infections are caused by species of the Candida genus, particularly C. albicans. The increasing number of strains developing resistance to antifungals, resulting in treatment failures, underscores the urgency of finding new antifungal agents. Since many bacteria of the genus Streptomyces produce molecules that inhibit fungal growth, this work aimed to evaluate the antifungal activity of three native isolates obtained from a rhizosphere and an artisanal composting system. Based on 16S RNA gene sequences, as well as biochemical and morphological traits, we identified S. globisporus, S. bacillaris, and S. cavourensis as the species most closely related to the S1H, S40, and S41 isolates, respectively. These species have been reported to produce antifungal compounds. The inhibition of Candida by antagonistic activity increased with longer Streptomyces incubation times, with no differences observed between Candida species. Few studies have simultaneously evaluated the inhibitory activity of Streptomyces isolates against different Candida strains. In this study, the isolates inhibited the growth of C. albicans, C. krusei, C. guilliermondii, C. glabrata, and C. lusitaniae, including strains resistant to fluconazole.

Keywords

actinobacteria, antagonism, antifungal activity, antimicrobial-resistant fungi, pathogenic yeasts, native microorganisms.

References
[1] Goemaere B, Becker P, van Wijngaerden E, Maertens J, Spriet I, Hendrickx M, Lagrou K. Increasing candidaemia incidence from 2004 to 2015 with a shift in epidemiology in patients preexposed to antifungals, Mycoses, 61(2): 127–133, 2018.
https://doi.org/10.1111/myc.12714
[2] Denning DW. Global incidence and mortality of severe fungal disease, The Lancet Infectious Diseases, 24(7): e428-e438, 2024.
https://doi.org/10.1016/S1473-3099(23)00692-8
[3] Sadeghi G, Ebrahimi-Rad M, Mousavi SF, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Emergence of non-Candida albicans species: Epidemiology, phylogeny and fluconazole susceptibility profile, Journal de Mycologie Medicale, 28(1): 51–58, 2018.
https://doi.org/10.1016/j.mycmed.2017.12.008
[4] Staniszewska M. Virulence factors in Candida species, Current Protein & Peptide Science, 21(3): 313–323, 2020.
https://doi.org/10.2174/1389203720666190722152415
[5] Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral candidiasis: A disease of opportunity, Journal of Fungi, 6(1): 15, 2020.
https://doi.org/10.3390/jof6010015
[6] Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases -estimate precision, Journal of Fungi, 3(4): 57, 2017.
https://doi.org/10.3390/jof3040057
[7] Motoa G, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiología de aislamientos de Candida en Unidades de Cuidados Intensivos en Colombia durante el período 2010–2013, Revista Iberoamericana de Micologia, 34(1): 17–22, 2017.
https://doi.org/10.1016/j.riam.2016.02.006
[8] Cortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos EV. Candidemia in Colombia, Biomedica, 40(1): 195–207, 2020.
https://doi.org/10.7705/biomedica.4400
[9] Gómez-Gaviria M, Mora-Montes HM. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen, Infection and Drug Resistance, 13: 1673–1689, 2020.
https://doi.org/10.2147/IDR.S247944
[10] Naicker SD, Shuping L, Zulu TG, Mpembe RS, Mhlanga M, Tsotetsi EM, Maphanga TG, Govender NP. Epidemiology and susceptibility of Nakaseomyces (formerly Candida) glabrata bloodstream isolates from hospitalised adults in South Africa. Medical Mycology,
61(6): myad057, 2023.
https:/doi.org/10.1093/mmy/myad057
[11] Ahangarkani F, Badali H, Rezai MS, Shokohi T, Abtahian Z, Mahmoodi Nesheli H, Karami H, Roilides E, Tamaddoni A. Candidemia due to Candida guilliermondii in an immunocompromised infant: a case report and review of literature, Current Medical
Mycology, 5(1): 32–36, 2019.
https://doi.org/10.18502/cmm.5.1.535
[12] Haseeb ul Rasool M, Swaminathan G, Hosna AU, Ishfaq S, Trandafirescu T. Candida lusitaniae, an emerging opportunistic pathogen in immunocompetent populations: A case report, Cureus, 15(8): e43211, 2023.
https://doi.org/10.7759/cureus.43211
[13] Fioriti S, Brescini L, Pallotta F, Canovari B, Morroni G, Barchiesi F. Antifungal combinations against Candida species: From bench to bedside, Journal of Fungi, 8(10): 1077, 2022.
https://doi.org/10.3390/jof8101077
[14] Panariello BHD, Klein MI, Mima EGDO, PavarinaAC. Fluconazole impacts the extracellular matrix of fluconazole-susceptible and -resistant Candida albicans and Candida glabrata biofilms, Journal of Oral Microbiology, 10: 1476644, 2018.
https://doi.org/10.1080/20002297.2018.1476644
[15] Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I, Perlin DS. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris, Journal of Clinical Microbiology, 55(8): 2445–2452, 2017.
https://doi.org/10.1128/JCM.00630-17
[16] Donadu MG, Peralta-Ruiz Y, Usai D, Maggio F, Molina-Hernandez JB, Rizzo D, Bussu F, Rubino S, Zanetti S, Paparella A, Chaves-Lopez C. Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains, Journal of Fungi, 7(5):
383, 2021.
https://doi.org/10.3390/jof7050383
[17] Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T. Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective, Microbiology Research, 13(3): 418–465, 2022.
https://doi.org/10.3390/microbiolres13030031
[18] Huang K, Zhang B, Shen ZY, Cai X, Liu ZQ, Zheng YG. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus, Microbiological Research, 242: 126623, 2021.
https://doi.org/10.1016/j.micres.2020.126623
[19] Liu R, Deng Z, Liu, T. Streptomyces species: Ideal chassis for natural product discovery and overproduction, Metabolic Engineering, 50: 74–84, 2018.
https://doi.org/10.1016/j.ymben.2018.05.015
[20] Bontemps C, Toussaint M, Revol PV, Hotel L, Jeanbille M, Uroz S, Turpault MP, Blaudez D, Leblond P. Taxonomic and functional diversity of Streptomyces in a forest soil, FEMS Microbiology Letters, 342(2): 157–167, 2013.
https://doi.org/10.1111/1574-6968.12126
[21] Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production, World Journal of Microbiology and Biotechnology, 25: 649-655, 2009.
https://doi.org/10.1007/s11274-008-9933-x
[22] Law JWF, Pusparajah P, Ab Mutalib NS,Wong SH, Goh BH, Lee LH. A review on mangrove actinobacterial diversity: The roles of Streptomyces and novel species discovery, Progress in Microbes and Molecular Biology, 2(1): a0000024, 2019.
[23] Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J. Microbiological aspects of biowaste during composting in a monitored compost bin, Journal of Applied Microbiology, 94(1): 127-137, 2003.
https://doi.org/10.1046/j.1365-2672.2003.01800.x
[24] Ayed A, Essid R, Jallouli S, Zaied AB, Fdhila SB, Limam F, Tabbene O. Antifungal activity of volatile organic compounds (VOCs) produced by Streptomyces olivochromogenes S103 against Candida albicans, Euro-Mediterranean Journal for Environmental Integration, 7(2): 251–255, 2022.
https://doi.org/10.1007/s41207-022-00302-w
[25] Chen C, Chen X, Ren B, Guo H, Abdel-Mageed WM, Liu X, Song F, Zhang, L. Characterization of Streptomyces sp. LS462 with high productivity of echinomycin, a potent antituberculosis and synergistic antifungal antibiotic, Journal of Industrial Microbiology and Biotechnology, 48: 9–10, 2021.
https://doi.org/10.1093/jimb/kuab079
[26] Ministerio de Salud y Protección Social República de Colombia. Resolución 1411 de 2022 por la cual se adopta la Política de Soberanía en la producción para la Seguridad Sanitaria.
https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%20No.%201411%20de%202022.pdf.
[27] Kämpfer P. Order XIV. Streptomycetales ord. nov. In M Goodfellow, P Kämpfer, HJ Busse, ME Trujillo, K Suzuki, W Ludwig, WB Whitman (ed.), Bergey’s Manual of Systematic Bacteriology. Volume 5. The Actinobacteria, Part A and B. 2nd ed. Springer, Athens, USA.
2012.
[28] Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species, International Journal of Systematic Bacteriology, 16(3): 313–340, 1966.
https://doi.org/10.1099/00207713-16-3-313
[29] Sharma D, Kaur T, Chadha BS, Manhas RK. Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens, Tropical Journal of Pharmaceutical Research, 10(6): 801–808, 2011.
https://doi.org/10.4314/tjpr.v10i6.14
[30] Lane D. 16S/23S rRNA sequencing. In E Stackebrandt, M Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York, USA. 1991.
[31] Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of
sequence data, Bioinformatics, 28(12): 1647–1649, 2012.
https://doi.org/10.1093/bioinformatics/bts199
[32] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, 22(22): 4673–4680, 1994.
https://doi.org/10.1093/nar/22.22.4673
[33] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool, Journal of Molecular Biology, 215(3): 403–410, 1990.
https://doi.org/10.1016/S0022-2836(05)80360-2
[34] Clinical and Laboratory Standards Institute – CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. CLSI Standard M27. Clinical and Laboratory Standards Institute, Wayne, PA, USA. 2017.
[35] Velho-Pereira S, Kamat NM. Antimicrobial screening of actinobacteria using a modified cross-streak method, Indian Journal of Pharmaceutical Sciences, 73(2): 223–228, 2011.
https://doi.org/10.4103/0250-474x.91566
[36] Cuesta G, García-de-la-Fuente R, Abad M, Fornes F. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents, Journal of Environmental Management, 95: S280–S284, 2012.
https://doi.org/10.1016/j.jenvman.2010.11.023
[37] Devi P, Sujatha K, Chendrayan K, Sivakumar U. Laccase producing Streptomyces bikiniensis CSC12 isolated from compost, Journal of Microbiology, Biotechnology and Food Sciences, 6(2): 794–798, 2016.
https://doi.org/10.15414/jmbfs.2016.6.2.794-798
[38] Ekundayo FO, Oyeniran KA, Adedokun AD. Antimicrobial activities of some Streptomyces isolated from garden soil samples and fish pond water in FUTA, Journal of Bio-Science, 22: 21–29, 2014.
https://doi.org/10.3329/jbs.v22i0.30005
[39] Kelly KL, Judd DB. Color. Universal Language and Dictionary of Names. Washington, DC: National Bureau of Standards. 1955.
[40] Centore P. ISCC-NBS Colour System. 2016.
https://www.munsellcolourscienceforpainters.com/ISCCNBS/ISCCNBSSystem.html
[41] Komaki H. Recent progress of reclassification of the genus Streptomyces, Microorganisms, 11(4): 831, 2023.
https://doi.org/10.3390/microorganisms11040831
[42] Mendes TD, Borges WS, Rodrigues A, Solomon SE, Vieira PC, Duarte MCT, Pagnocca FC. Anti-Candida properties of urauchimycins from actinobacteria associated with Trachymyrmex ants, BioMed Research International, 2013: 835081, 2013.
https://doi.org/10.1155/2013/835081
[43] Sanjenbam P, Gopal JV, Kannabiran K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1, Journal de Mycologie Médicale, 24(3): 211–219, 2014.
https://doi.org/10.1016/j.mycmed.2014.03.004
[44] Gutierrez-Espinoza CA, León-Quispe J. Actinomicetos con actividad anti-Candida aisladas de hormigas cortadoras de hojas Atta cephalotes (Formicidae: Myrmicinae: Attini), Revista Peruana de Medicina Experimental y Salud Pública, 35(4): 590–598, 2018.
https://doi.org/10.17843/rpmesp.2018.354.3673
[45] Vartak A, Mutalik V, Parab RR, Shanbhag P, Bhave S, Mishra PD, Mahajan GB. Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680, Letters in Applied Microbiology, 58(6): 591–596, 2014.
https://doi.org/10.1111/lam.12229
[46] Chung B, Hwang JY, Park SC, Kwon OS, Cho E, Lee J, Lee HS, Oh DC, Shin J, Oh KB. Inhibitory effects of nitrogenous metabolites from a marine-derived Streptomyces bacillaris on isocitrate lyase of Candida albicans, Marine Drugs, 20(2): 138, 2022.
https://doi.org/10.3390/md20020138
[47] Allouche N, Mellouli L. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation, Microbial Pathogenesis, 142: 104106, 2020.
https://doi.org/10.1016/j.micpath.2020.104106
[48] Ma A, Zhang X, Jiang K, Zhao C, Liu J, Wu M, Wang Y, Wang M, Li J, Xu S. Phylogenetic and physiological diversity of cultivable actinomycetes isolated from Alpine habitats on the Qinghai-Tibetan Plateau, Frontiers in Microbiology, 11: 2020.
https:/doi.org/10.3389/fmicb.2020.555351
[49] Sheik G, Alhumaidy A, Abdel Raheim AA, Alzeyadi Z, AlGhonaim M. Taxonomic characterizations of soil Streptomyces cavourensis DW102 and its activity against fungal pathogen, Journal of Pharmacy and Bioallied Sciences, 12(4): 462–467, 2020.
https://doi.org/10.4103/JPBS.JPBS_304_20
[50] Sineva ON, Bychkova OP, Sadykova VS. Actinomycetes of the genus Streptomyces from the Silty Mud of Tambukan Lake are producers of antibiotic compounds, Medical Sciences Forum, 12(1): 14, 2022.
https://doi.org/10.3390/eca2022-12752
[51] Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: A current perspective, Infection and Drug Resistance, 10: 237–245, 2017.
https://doi.org/10.2147/IDR.S118892
How to Cite
Arango-Gil , M., Mora-López , M., Correa-Gómez , E., & Osorio-Echeverri, V. M. (2025). Characterization of three native Streptomyces isolates that inhibit the growth of fluconazole-resistant Candida spp strains. Universitas Scientiarum, 30, 1–20. https://doi.org/10.11144/Javeriana.SC30.cotn
Section
Applied Microbiology