Published Mar 1, 2024


Google Scholar
Search GoogleScholar

Fabián Andrés Garzón Posse

Angie Kathleen Pinilla Peña

Cesar Augusto Rivas Velásquez

María Camila Murillo Virgüez

Jorge Alberto Gutiérrez Méndez



The use of a novel and powerful technology that allows for the precise editing of the genetic material of various organisms is becoming widespread. This technology derives from bacterial and archaeal defense machinery and is called CRISPR Cas9. Unlike other gene editing tools that exclusively rely on proteins, CRISPR Cas9 utilizes interactions between the target DNA and an RNA sequence that guides the Cas9 enzyme to alter the structure of a target gene. Various genome locations can be edited thanks to the ease of programming different guide RNA sequences, facilitating its use and implementation. Furthermore, the non-active version of the Cas9 protein, guided by its corresponding RNA, can be utilized for visualization processes of genetic material or, more recently, for the regulation of the transcription process. Considering the recent advances and possibilities in biomedical and biotechnological research, we must understand that the exploration of this technology is just beginning, and its eventual applications will influence the world around us on multiple levels. In this review, we describe the biological foundations of the functioning of the Cas9 nuclease, together with selected applications of its use in editing and regulating specific sections of the genetic material of various organisms. We also discuss some bioethical issues surrounding this subject.


CRISPR Cas9, gene editing, monogenic disease, cancer biology, antiviral therapy, bioethics

[1] Crick F. Central Dogma of Molecular Biology, Nature, 227(5258): 561–563. 1970
doi: 10.1038/227561a0
[2] Li GW, Xie XS. Central Dogma at the Single-Molecule Level in Living Cells, Nature, 475 (7356): 308–315. 2011
doi: 10.1038/nature10315
[3] Cobb M. 60 Years Ago, Francis Crick Changed the Logic of Biology, PLOS Biology, 15 (9): e2003243. 2017
doi: 10.1371/journal.pbio.2003243
[4] Porteus MH, Carroll D. Gene Targeting Using Zinc Finger Nucleases, Nature Biotechnology, 23 (8): 967–973. 2005
doi: 10.1038/nbt1125
[5] Joung JK, Sander JD. TALENs: A Widely Applicable Technology for Targeted Genome Editing. Nature Review Molecular Cell Biology, 14 (1): 49–55. 2013
doi: 10.1038/nrm3486
[6] Carlson DF, Fahrenkrug SC, Hackett PB. Targeting DNA With Fingers and TALENs, Molecular Therapy - Nucleic Acids, 1 (1): 2012
doi: 10.1038/mtna.2011.5
[7] Khan SH. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome- Editing Techniques and Bioethical Concerns for Clinical Application, Molecular Therapy - Nucleic Acids, 16: 326–334. 2019
doi: 10.1016/j.omtn.2019.02.027
[8] Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D. Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila, G3 Genes|Genomes|Genetics, 3 (10):
1717–1725. 2013
doi: 10.1534/g3.113.007260
[9] Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of Genome Editing Technology in the Targeted Therapy of Human Diseases: Mechanisms, Advances and Prospects, Signal Transduction and Targeted Therapy, 5 (1): 1–23. 2020
doi: 10.1038/s41392-019-0089-y
[10] Adli M. The CRISPR Tool Kit for Genome Editing and Beyond, Nature Communication, 9 (1): 1911. 2018
doi: 10.1038/s41467-018-04252-2
[11] Musunuru K. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review, Journal of American Medical Association. Cardiology, 2 (8): 914–919. 2017
doi: 10.1001/jamacardio.2017.1713
[12] Doudna JA, Charpentier E. The New Frontier of Genome Engineering with CRISPR-Cas9, Science, 346 (6213): 1258096. 2014
doi: 10.1126/science.1258096
[13] Wang H, La Russa M, Qi LS. CRISPR/Cas9 in Genome Editing and Beyond, Annual Review of Biochemistry, 85, 227–264. 2016
doi: 10.1146/annurev-biochem-060815-014607
[14] Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms, Annual Review of Biophysics, 46, 505–529. 2017
doi: 10.1146/annurev-biophys-062215-010822
[15] Xu Y, Li Z. CRISPR-Cas Systems: Overview, Innovations and Applications in Human Disease Research and Gene Therapy, Computational and Structural Biotechnology Journal, 18, 2401–2415. 2020
doi: 10.1016/j.csbj.2020.08.031
[16] Liu Z, Dong H, Cui Y, Cong L, Zhang D. Application of Different Types of CRISPR/Cas- Based Systems in Bacteria, Microbial Cell Factories, 19 (1): 172-186. 2020.
doi: 10.1186/s12934-020-01431-z
[17] Huang TK, Puchta H. Novel CRISPR/Cas Applications in Plants: From Prime Editing to Chromosome Engineering, Transgenic Research, 30 (4): 529–549. 2021
doi: 10.1007/s11248-021-00238-x
[18] Charpentier E. CRISPR-Cas9: How Research on a Bacterial RNA-Guided Mechanism Opened New Perspectives in Biotechnology and Biomedicine. EMBO, Molecular Medicine, 7 (4): 363–365. 2015
doi: 10.15252/emmm.201504847
[19] Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS. Bacterial CRISPR: Accomplishments and Prospects, Current Opinion in Microbiology, 27, 121–126. 2015
doi: 10.1016/j.mib.2015.08.007
[20] Kick L, Kirchner M, Schneider S. CRISPR-Cas9: From a Bacterial Immune System to Genome-Edited Human Cells in Clinical Trials, Bioengineered, 8 (3): 280-286. 2017
doi: 10.1080/21655979.2017.1299834
[21] Jiang F, Doudna JA. The Structural Biology of CRISPR-Cas Systems, Current Opinion in Structural Biology, 30, 100–111. 2015
doi: 10.1016/
[22] Cui Y, Xu J, Cheng M, Liao X, Peng S. Review of CRISPR/Cas9 sgRNA Design Tools, Interdisciplinary Sciences, 10 (2): 455–465. 2018
doi: 10.1007/s12539-018-0298-z
[23] Wu X, Kriz AJ, Sharp PA. Target Specificity of the CRISPR-Cas9 System, Quantitative Biology, 2 (2): 59–70. 2014
doi: 10.1007/s40484-014-0030-x
[24] Spencer JM, Zhang X. Deep Mutational Scanning of S. Pyogenes Cas9 Reveals Important Functional Domains, Scientific Reports, 7 (1): 16836-16850. 2017
doi: 10.1038/s41598-017-17081-y
[25] Mekler V, Kuznedelov K, Severinov K. Quantification of the Affinities of CRISPR–Cas9 Nucleases for Cognate Protospacer Adjacent Motif (PAM) Sequences, Journal of Biological Chemistry, 295 (19): 6509–6517. 2020
doi: 10.1074/jbc.RA119.012239
[26] Saha A, Arantes PR, Palermo G. Dynamics and Mechanisms of CRISPR-Cas9 through the Lens of Computational Methods, Current opinion in structural biology, 75, 102400. 2022
doi: 10.1016/
[27] Ricci CG, Chen JS, Miao Y, Jinek M, Doudna JA, McCammon JA, Palermo G. Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics, ACS Central Sciences, 5 (4): 651–662. 2019
doi: 10.1021/acscentsci.9b00020
[28] Nierzwicki Ł, Arantes PR, Saha A, Palermo G. Establishing the Allosteric Mechanism in CRISPR-Cas9, WIREs Computational Molecular Science, 11 (3): e1503. 2021
doi: 10.1002/wcms.1503
[29] Hryhorowicz M, Lipiński D, Zeyland J. Evolution of CRISPR/Cas Systems for Precise Genome Editing, International Journal of Molecular Sciences, 24 (18): 14233-14248. 2023
doi: 10.3390/ijms241814233
[30] Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna, JA. Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activatio, Science, 343 (6176):
1247997. 2014
doi: 10.1126/science.1247997
[31] Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA. Structures of a CRISPR-Cas9 R-Loop Complex Primed for DNA Cleavage, Science, 351 (6275): 867–871. 2016
doi: 10.1126/science.aad8282
[32] Chatterjee N, Walker GC. Mechanisms of DNA Damage, Repair and Mutagenesis, Environmental and Molecular Mutagenesis, 58 (5): 235–263. 2017
doi: 10.1002/em.22087
[33] Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA Repair by Nonhomologous End Joining and Homologous Recombination during Cell Cycle in Human Cells, Cell Cycle, 7 (18): 2902–2906. 2008
doi: 10.4161/cc.7.18.6679
[34] Li X, Heyer WD. Homologous Recombination in DNA Repair and DNA Damage Tolerance, Cell Research, 18 (1): 99–113. 2008
doi: 10.1038/cr.2008.1
[35] Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced Homology-Directed Human Genome Engineering by Controlled Timing of CRISPR/Cas9 Delivery, Elife, 3, e04766. 2014
doi: 10.7554/eLife.04766
[36] Dimitri A, Herbst F, Fraietta JA. Engineering the Next-Generation of CAR T-Cells with CRISPR-Cas9 Gene Editing, Molecular Cancer, 21 (1), 78-91. 2022
doi: 10.1186/s12943-022-01559-z
[37] Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of Muscular Dystrophy in Mice by CRISPR/Cas9-Mediated Editing of Germline DNA, Science, 345 (6201): 1184–1188. 2014
doi: 10.1126/science.1254445.9
[38] Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. CRISPR-Assisted Editing of Bacterial Genomes, Nature Biotechnology, 31 (3): 233–239. 2013
doi: 10.1038/nbt.2508
[39] Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L. PAM Identification by CRISPR-Cas Effector Complexes: Diversified Mechanisms and Structures, RNA Biology, 16 (4): 504–517. 2018
doi: 10.1080/15476286.2018.1504546
[40] Rhun AL, Escalera-Maurer A, Bratovič M, Charpentier E. CRISPR-Cas in Streptococcus Pyogenes, RNA Biology, 16 (4): 380-389. 2019
doi: 10.1080/15476286.2019.1582974
[41] Wang H, La Russa M, Qi LS. CRISPR/Cas9 in Genome Editing and Beyond, Annual Review of Biochemistry, 85, 227–264. 2016
doi: 10.1146/annurev-biochem-060815-014607
[42] Yourik P, Fuchs RT, Mabuchi M, Curcuru JL, Robb GB. Staphylococcus Aureus Cas9 Is a Multiple-Turnover Enzyme, RNA, 25 (1): 35-44. 2019
doi: 10.1261/rna.067355.118
[43] Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C. Streptococcus Thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome, Molecular Therapy, 24 (3): 636–644. 2016
doi: 10.1038/mt.2015.218
[44] Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient Genome Engineering in Human Pluripotent Stem Cells Using Cas9 from Neisseria Meningitidis, Proceedings of the National Academy of Sciences, 110 (39): 15644–15649. 2013
doi: 10.1073/pnas.1313587110
[45] Nakagawa R, Ishiguro S, Okazaki S, Mori H, Tanaka M, Aburatani H, Yachie N, Nishimasu H, Nureki O. Engineered Campylobacter Jejuni Cas9 Variant with Enhanced Activity and Broader Targeting Range, Communications Biology, 5 (1): 1–8. 2022
doi: 10.1038/s42003-022-03149-7
[46] Cui Y, Xu J, Cheng M, Liao X, Peng S. Review of CRISPR/Cas9 sgRNA Design Tools, Interdisciplinary Sciences, 10 (2): 455–465. 2018
doi: 10.1007/s12539-018-0298-z
[47] Chatterjee P, Jakimo N, Lee J, Amrani N, Rodríguez T, Koseki SRT, Tysinger E, Qing R, Hao S, Sontheimer EJ, Jacobson J. An Engineered ScCas9 with Broad PAM Range and High Specificity and Activity, Nature Biotechnology, 38 (10): 1154–1158. 2020
doi: 10.1038/s41587-020-0517-0
[48] Nan W, Lu S, Jing L, Mi W, Yingchun L, Chuangang Z, Chenzhong F, Lifang Z, Fayu Y, Feng G. Engineered Staphylococcus Auricularis Cas9 with High-Fidelity, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 37 (8): e23060. 2023
doi: 10.1096/fj.202202132RR
[49] Xue C, Greene EC. DNA Repair Pathway Choices in CRISPR-Cas9 Mediated Genome Editing, Trends in Genetics, 37 (7): 639–656. 2021
doi: 10.1016/j.tig.2021.02.008
[50] Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino A, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity, Cell, 154 (6): 1380–1389. 2013
doi: 10.1016/j.cell.2013.08.021
[51] Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH, Ke AW. Current Applications and Future Perspective of CRISPR/Cas9 Gene Editing in Cancer, Molecular Cancer, 21 (1): 57-81. 2022
doi: 10.1186/s12943-022-01518-8
[52] Liu Y, Ma G, Gao Z, Li J, Wang J, Zhu X, Ma R, Yang J, Zhou Y, Hu K, Zhang Y, Guo Y. Global Chromosome Rearrangement Induced by CRISPR-Cas9 Reshapes the Genome and Transcriptome of Human Cells, Nucleic Acids Research, 50 (6): 3456–3474. 2022
doi: 10.1093/nar/gkac153
[53] Eroglu M, Yu B, Derry B. Efficient CRISPR/Cas9 Mediated Large Insertions Using Long Single-Stranded Oligonucleotide Donors in C. Elegans, FEBS Journal, 290 (18): 4429-4439. 2023
doi: 10.1111/febs.16876
[54] Romanelli SM, Lewis KT, Nishii A, Rupp AC, Li Z, Mori H, Schill RL, Learman BS, Rhodes CJ, MacDougald OA. BAd-CRISPR: Inducible Gene Knockout in Interscapular Brown Adipose Tissue of Adult Mice, Journal of Biological Chemistry, 297 (6): 101402. 2021
doi: 10.1016/j.jbc.2021.101402
[55] Guan L, Zhu S, Han Y, Yang C, Liu Y, Qiao L, Li X, Li H, Lin J. Knockout of CTNNB1 by CRISPR-Cas9 Technology Inhibits Cell Proliferation through the Wnt/β-Catenin Signaling Pathway, Biotechnology Letters, 40 (3): 501–508. 2018
doi: 10.1007/s10529-017-2491-2
[56] Bordat C, Vairo D, Cuerq C, Halimi C, Peiretti F, Penhoat A, Vieille-Marchiset A, Gonzalez T, Michalski MC, Nowicki M, Peretti N, Reboul E. Validation of Knock-Out Caco-2 TC7 Cells as Models of Enterocytes of Patients with Familial Genetic Hypobetalipoproteinemias, Nutrients, 15 (3): 505. 2023
doi: 10.3390/nu15030505
[57] Jayme S, Jean M, Alexandre O, Graham D. CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo, Current gene therapy 17(4): 263-274. 2017
doi: 10.2174/1566523217666171122094629
[58] Lee SH, Kim S, Hur JK. CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes, Molecules and Cells, 41 (11): 943-952. 2018
doi: 10.14348/molcells.2018.0408
[59] Oscar MC, Marta GR, Cristina G, Salvador B, Nuria R, Jeronimo B. CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-Viral Procedure for Bystander Treatment of Glioma in Mice, Molecular therapy. Nucleic acids, 8, 395-403. 2017
doi: 10.1016/j.omtn.2017.07.012
[60] Tran NT, Sommermann T, Graf R, Trombke J, Pempe J, Petsch K, Kühn R, Rajewsky K, Chu VT. Efficient CRISPR/Cas9-Mediated Gene Knockin in Mouse Hematopoietic Stem and Progenitor Cells, Cell Reports, 28 (13): 3510-3522. 2019
doi: 10.1016/j.celrep.2019.08.065
[61] Baird PA, Anderson TW, Newcombe HB, Lowry RB. Genetic Disorders in Children and Young Adults: A Population Study, American Journal of Human Genetics, 42 (5): 677-693. 1988
[62] Prakash V, Moore MM Yáñez-Muñoz RJ. Current Progress in Therapeutic Gene Editing for Monogenic Diseases, Molecular Therapy, 24 (3): 465–474. 2016
doi: 10.1038/mt.2016.5
[63] Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington’s Disease Mouse Model, Molecular Therapy Nucleic Acids, 17, 829–839. 2019
doi: 10.1016/j.omtn.2019.07.009
[64] Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ. In Vivo Gene Editing in Dystrophic Mouse Muscle and Muscle Stem Cells, Science, 351 (6271): 407–411. 2016
doi: 10.1126/science.aad5177
[65] Goedert M. Tau Protein and the Neurofibrillary Pathology of Alzheimer’s Disease, Trends in Neurosciences, 16 (11): 460–465. 1993
doi: 10.1016/0166-2236(93)90078-Z
[66] Sanchez CG, Acker CM, Gray A, Varadarajan M, Song C, Cochran NR, Paula S, Lindeman A, An S, McAllister G, Alford J, Reece-Hoyes J, Russ C, Craig L, Capre K, Doherty C, Hoffman GR, Luchansky SJ, Polydoro M, Dolmetsch R, Elwood F. Genome-Wide CRISPR Screen
Identifies Protein Pathways Modulating Tau Protein Levels in Neurons, Communications Biology, 4 (1): 736-750 2021
doi: 10.1038/s42003-021-02272-1
[67] Yamagata T, Raveau M, Kobayashi K, Miyamoto H, Tatsukawa T, Ogiwara I, Itohara S, Hensch TK, Yamakawa K. CRISPR/dCas9-Based Scn1a Gene Activation in Inhibitory Neurons Ameliorates Epileptic and Behavioral Phenotypes of Dravet Syndrome Model Mice, Neurobiology of Disease, 141, 104954. 2020
doi: 10.1016/j.nbd.2020.104954
[68] Odame I. Perspective: We Need a Global Solution, Nature, 515 (7526). 2014
doi: 10.1038/515S10a
[69] Platt O, Brambilla D, Rosse W, Milner P, Castro O, Steinberg M, Klug P. Mortality in Sickle Cell Disease. Life Expectancy and Risk Factors for Early Death, The New England journal of medicine, 330 (23): 1639-1644. 1994
doi: 10.1056/NEJM199406093302303
[70] Elliot V, Carolyn H, Kenneth A, Russel W, Videlis N, Amal EB, Hoda H, Maureen A, Salam A, Clark B, David D, Paul T, Dimitris T, Ashraf E, Victor G, Julie K, Miguel A, Joshua L, Margaret T, Allison I, Barbara T, Jo H. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease, The New England journal of medicine, 381(6): 509-519. 2019
doi: 10.1056/NEJMoa1903212
[71] Mary E, Ruta B, Mark W, Francoise B, Khalid B, Courtney F, Jane H, Julie K, Joer M, Javier BM, Julie P, Damiano R, Shalini S, Joi W, Teonna W, Eliane G, John W, John T. Effect of Donor Type and Conditioning Regimen Intensity on Allogeneic Transplantation Outcomes
in Patients with Sickle Cell Disease: A Retrospective Multicentre, Cohort Study, The Lancet. Haematology, 6 (11): 585-596. 2019
doi: 10.1016/S2352-3026(19)30154-1
[72] Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus M. H. Multiplexed Genetic Engineering of Human Hematopoietic Stem and Progenitor Cells Using CRISPR/Cas9 and AAV6, Elife, 6, e27873. 2017
doi: 10.7554/eLife.27873
[73] Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH. CRISPR/Cas9 β-Globin Gene Targeting in Human Haematopoietic Stem Cells, Nature, 539 (7629): 384–389. 2016
doi: 10.1038/nature20134
[74] Martin RM, Ikeda K, Cromer MK, Uchida N, Nishimura T, Romano R, Tong AJ, Lemgart VT, Camarena J, Pavel-Dinu M, Sindhu C, Wiebking V, Vaidyanathan S, Dever DP, Bak RO, Laustsen A, Lesch BJ, Jakobsen MR, Sebastiano V, Nakauchi H, Porteus MH. Highly
Efficient and Marker-Free Genome Editing of Human Pluripotent Stem Cells by CRISPRCas9 RNP and AAV6 Donor-Mediated Homologous Recombination, Cell Stem Cell, 24 (5): 821-828. 2019
doi: 10.1016/j.stem.2019.04.001
[75] Xu L, Lahiri P, Skowronski J, Bhatia N, Lattanzi A, Porteus MH. Molecular Dynamics of Genome Editing with CRISPR-Cas9 and rAAV6 Virus in Human HSPCs to Treat Sickle Cell Disease, Molecular Therapy Methods and Clinical Development, 30, 317–331. 2023
doi: 10.1016/j.omtm.2023.07.009
[76] Raffaella O. β-Thalassemia, Genetics in medicine: official journal of the American College of Medical Genetics, 19(6): 609-619. 2017
doi: 10.1038/gim.2016.173
[77] Fucharoen S, Weatherall DJ. Progress Toward the Control and Management of the Thalassemias, Hematology Oncology Clinics of North America, 30 (2): 359–371. 2016
doi: 10.1016/j.hoc.2015.12.001
[78] Cosenza LC, Gasparello J, Romanini N, Zurlo M, Zuccato C, Gambari R, Finotti A. Efficient CRISPR-Cas9-Based Genome Editing of β-Globin Gene on Erythroid Cells from Homozygous Β039-Thalassemia Patients, Molecular Therapy Methods and Clinical Development, 21, 507–523. 2021
doi: 10.1016/j.omtm.2021.03.025
[79] Akiko S, Sascha R. Optimized RNP Transfection for Highly Efficient CRISPR/Cas9- Mediated Gene Knockout in Primary T Cells, The Journal of experimental medicine, 215(3): 985-997. 2018
doi: 10.1084/jem.20171626
[80] Kulemzin SV, Kuznetsova VV, Mamonkin M, Taranin AV, Gorchakov AA. Engineering Chimeric Antigen Receptors, Acta Naturae, 9(1): 6-14. 2017
[81] Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, Lam LP, Morgan RA, Friedman K, Massaro M, Wang J, Russotti G, Yang Z, Campbell T, Hege K, Petrocca F, Quigley MT, Munshi N, Kochenderfer JN. Anti-BCMA
CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma, New England Journal of Medicine, 380 (18): 1726–1737. 2019
doi: 10.1056/NEJMoa1817226
[82] Chmielewski M, Abken H. TRUCKs: The Fourth Generation of CARs, Expert Opinion in Biological Therapy, 15 (8): 1145–1154. 2015
doi: 10.1517/14712598.2015.1046430
[83] Li C, Mei H, Hu Y. Applications and Explorations of CRISPR/Cas9 in CAR T-Cell Therapy, Briefings in Functional Genomics, 19 (3): 175–182. 2020
doi: 10.1093/bfgp/elz042
[84] Yuan M, Webb E, Lemoine NR, Wang Y. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses, Viruses, 8 (3): 72-82. 2016
doi: 10.3390/v8030072
[85] Ou X, Ma Q, Yin W, Ma X, He Z. CRISPR/Cas9 Gene-Editing in Cancer Immunotherapy: Promoting the Present Revolution in Cancer Therapy and Exploring More, Frontiers in Cell and Developmental Biology, 9, 674467. 2021
doi: 10.3389/fcell.2021.674467
[86] Waldt N, Kesseler C, Fala P, John P, Kirches E, Angenstein F, Mawrin C. Crispr/Cas-Based Modeling of NF2 Loss in Meningioma Cells, Journal of Neuroscience Methods, 15(356): 109141. 2021
doi: 10.1016/j.jneumeth.2021.109141
[87] Koo T, Yoon AR, Cho HY, Bae S, Yun CO, Kim JS. Selective Disruption of an Oncogenic Mutant Allele by CRISPR/Cas9 Induces Efficient Tumor Regression, Nucleic Acids Research, 45 (13): 7897–7908. 2017
doi: 10.1093/nar/gkx490
[88] Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E, Zhang J, Yang S, Yang C, Mankin HJ, Hornicek FJ, Duan Z. Targeting CDK11 in Osteosarcoma Cells Using the CRISPR-Cas9 System, Journal of Orthopaedic Research, 33 (2): 199–207. 2015
[89] Sayed S, Paszkowski-Rogacz M, Schmitt LT, Buchholz F. CRISPR/Cas9 as a Tool to Dissect Cancer Mutations, Methods, 164, 36–48. 2019
doi: 10.1016/j.ymeth.2019.05.007
[90] Masoud GN, Li W. HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy, Acta Pharmaceutica Sinica B, 5 (5): 378–389. 2015
doi: 10.1016/j.apsb.2015.05.007
[91] Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, Pande T, Endy D, La Russa MF, Lewis DB, Qi LS. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza, Cell, 181 (4): 865-876. 2020
doi: 10.1016/j.cell.2020.04.020
[92] Herskovitz J, Hasan M, Patel M, Blomberg WR, Cohen JD, Machhi J, Shahjin F, Mosley RL, McMillan J, Kevadiya BD, Gendelman HE. CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination, EBioMedicine, 73, 103678. 2021
doi: 10.1016/j.ebiom.2021.103678
[93] Ashraf MU, Salman HM, Khalid MF, Khan MHF, Anwar S, Afzal S, Idrees M, Chaudhary SU. CRISPR-Cas13a Mediated Targeting of Hepatitis C Virus Internal-Ribosomal Entry Site (IRES) as an Effective Antiviral Strategy, Biomedicine and Pharmacotherapy, 136,
111239. 2021
doi: 10.1016/j.biopha.2021.111239
[94] Jubair L, Fallaha S, McMillan NAJ. Systemic Delivery of CRISPR/Cas9 Targeting HPV Oncogenes Is Effective at Eliminating Established Tumors, Molecular Therapy, 27 (12): 2091–2099. 2019
doi: 10.1016/j.ymthe.2019.08.012
[95] Hillary VE, Ceasar SA. A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering, Molecular Biotechnology, 65 (3): 311–325. 2023
doi: 10.1007/s12033-022-00567-0
[96] Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li P, Yu T. CRISPR/Cas9 Therapeutics: Progress and Prospects, Signal Transductions and Targeted Therapy, 8 (1): 1–23. 2023
Doi: 10.1038/s41392-023-01309-7
[97] Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J. CRISPR/Cas9-Mediated Gene Editing in Human Zygotes Using Cas9 Protein, Molecular Genetics and Genomics, 292 (3): 525–533. 2017
doi: 10.1007/s00438-017-1299-z
[98] Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J. CRISPR/Cas9-Mediated Gene Editing in Human Tripronuclear Zygotes, Protein Cell, 6 (5): 363–372. 2015
doi: 10.1007/s13238-015-0153-5
[99] Li J, Walker S, Nie J, Zhang X. Experiments That Led to the First Gene-Edited Babies: The Ethical Failings and the Urgent Need for Better Governance, Journal of Zhejiang University. Science. B, 20(1): 32-38. 2019
doi: 10.1631/jzus.B1800624
[100] Alonso M, Savulescu J. He Jiankui´s Gene‐editing Experiment and the Non‐identity Problem, Bioethics, 35 (6): 563–573. 2021
doi: 10.1111/bioe.12878
[101] Greely HT. CRISPR’d Babies: Human Germline Genome Editing in the He Jiankui Affair, Journal of Law and the Biosciences, 6 (1): 111–183. 2019
doi: 10.1093/jlb/lsz010
[102] Krimsky S. The Moral Choices on CRISPR Babies, The American Journal of Bioethics, 19 (10): 15–16. 2019
doi: 10.1080/15265161.2019.1644824
[103] Lau PL. Evolved Eugenics and Reinforcement of “Othering”: Renewed Ethico-Legal Perspectives of Genome Editing in Reproduction, BioTechnology, 12 (3): 51-59. 2023
doi: 10.3390/biotech12030051
[104] Califf RM. Benefit-Risk Assessments at the US Food and Drug Administration: Finding the Balance, Journal of American Medical Association, 317 (7): 693–694. 2017
doi: 10.1001/jama.2017.0410
[105] Ayanoglu FB, Elcin AE, Elcin YM. Bioethical Issues in Genome Editing by CRISPR-Cas9 Technology, Turkish Journal of Biology, 44 (2): 110–120. 2020
doi: 10.3906/biy-1912-52
[106] Hirsch F, Iphofen R, Koporc Z. Ethics Assessment in Research Proposals Adopting CRISPR Technology, Biochemistry and Medicine, 29 (2): 020202. 2019
doi: 10.11613/BM.2019.020202
[107] Duardo-Sanchez A. CRISPR-Cas in Medicinal Chemistry: Applications and Regulatory Concerns, Current Topics in Medicinal Chemistry, 17 (30): 3308–3315. 2017
doi: 10.2174/1568026618666171211151142
[108] Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito Vector Anopheles Gambiae, Nature Biotechnology, 34 (1): 78–83. 2016
doi: 10.1038/nbt.3439
How to Cite
Garzón Posse, F. A., Pinilla Peña, A. K., Rivas Velásquez , C. A., Murillo Virgüez , M. C., & Gutiérrez Méndez, J. A. (2024). Genetic Editing with CRISPR Cas9: recent Biomedical and Biotechnological Applications. Universitas Scientiarum, 29(1), 1–31.