Published Mar 25, 2024



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Karolina Kotsubo

Irineu Bianchini Júnior

Hugo Henrique Lanzi Saulino

Marcela Bianchessi da Cunha Santino

##plugins.themes.bootstrap3.article.details##

Abstract

In eutrophic environments, aquatic weeds reproduce rapidly, occupying extensive areas of the water body and preventing the multiple use of water resources. The use of the biomass of these plants in vermicomposting represents a sustainable alternative utilization of the excess biomass produced by eutrophication. The enrichment of macrophyte biomass during vermicomposting was tested using an inorganic solution (NPK 1.75 % and NPK 3.50 %) and an organic solution with glucose (0.25 g/L and 0.50 g/L) to improve the quality of the vermicompost. The consumption of biomass of the macrophytes by the Eisenia fetida increased as the vermicomposting progressed, reaching the highest values at the end of the experimental period. The control treatment, i.e., without earthworms, remained stable.
The electrical conductivity tended to increase for the treatments NPK 1.75 %, Glucose 0.25 g/L and Glucose 0.50 g/L. The pH of the vermicomposting tended to be neutral in all treatments. The control and inorganic treatments showed a reduction in macrophyte biomass and the number of individuals of Eisenia fetida. The additions of NPK and glucose slightly improved vermicompost quality and biomass consumption by the earthworms. However, using vermicompost alone does not meet the requirements for its use as a fertilizer. Thus, we suggest the use of vermicompost in association with other fertilizers, adding moisture and structuring the soil.

Keywords

Eichhornia crassipes; Eisenia fetida; eutrophication; glucose; humification; mathematical modeling; nutrients.

References
[1] Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. Global diversity of aquatic macrophytes in freshwater, Hydrobiology, 595(1): 9-26, 2008.
doi: 10.1007/s10750-007-9154-6
[2] Najar IA. Vermicomposting of aquatic weeds: a quick review, Plant Science Today, 4(3): 133-136, 2017.
doi: 10.14719/pst.2017.4.3.311
[3] Thomaz SM. Ecosystem services provided by freshwater macrophytes, Hydrobiologia, 850: 2757-2777, 2023.
doi: 10.1007/s10750-021-04739-y
[4] Chapungu L, Mudyazhezha OC, Mudzengi B. Socio-ecological impacts of water hyacinth (Eichhornia crassipes) under dry climatic conditions: the case of Shagashe River in Masvingo, Zimbabwe, Journal of Environmental Science and Public Health, 2(1): 36- 52, 2018.
doi: 10.26502/jesph.96120027
[5] Zhang Y, Ma R, Liang Q, Guan B, Loiselle S. Secondary impacts of eutrophication control activities in shallow lakes: Lessons from aquatic macrophyte dynamics in Lake Taihu from 2000 to 2015, Freshwater Science, 38(4): 802-817, 2019.
doi: 10.1086/706197
[6] Koutika LS, Rainey HJ. A review of the invasive, biological and beneficial characteristics of aquatic species Eichhornia crassipes and Salvinia molesta, Applied Ecology and Environmental Research, 13(1): 263-275, 2015.
doi: 10.15666/aeer/1301_263275
[7] Kurugundla CN, Mathangwane B, Sakuringwa S, Katorah G. Alien invasive aquatic plant species in Botswana: Historical perspective and management, The Open Plant Science Journal, 9: 1-40, 2016.
doi: 10.2174/1874294701609010001
[8] Cordeiro PF, Goulart FF, Macedo DR, Campos MCS, Castro SR. Modeling of the potential distribution of Eichhornia crassipes on a global scale: risks and threats to water ecosystems, Revista Ambiente & Água, 15(2): e2421, 2020.
doi: 10.4136/ambi-agua.2421
[9] Kumari K, Swain AA, Kumar M, Bauddh K. Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: a review, Environmental Sustainability, 4: 285–297, 2021.
doi: 10.1007/s42398-021-00185-7
[10] Toledo M, Gutiérrez MC, Siles JA, Martín MA. Full-scale composting of sewage sludge and market waste, Stability monitoring and odor dispersion modeling, Environmental Research, 167: 739-750, 2018.
doi: 10.1016/j.envres.2018.09.001
[11] Padhan K, Patra RK, Sethi D, Panda N, Sahoo SK, Pattanayak KS, Akshaya KS. Isolation, characterization and identification of cellulose-degrading bacteria for composting of agrowastes, Biomass Conversion and Biorefinery, 2023.
doi: 10.1007/s13399-023-04087-y
[12] Padhan K, Patra RK, Sethi D, Mohanty S, Sahoo SK, Panda N, Pattanayak SK, Patra, AK. Isolation of cellulose degrading bacteria in bioconversion of agro-wastes, Chemosphere, 47: 140654, 2024.
doi: 10.1016/j.chemosphere.2023.140654
[13] Ahmed R, Deka H. Vermicomposting of patchouli bagasse - A byproduct of essential oil industries employing Eisenia fetida, Environmental Technology & Innovation, 25: 02232, 2022.
doi: 10.1016/j.eti.2021.102232
[14] Patra RK, Behera D, Mohapatra KK, Sethi D, Mandal M, Patra AK, Ravindran B. Juxtaposing the quality of compost and vermicompost produced from organic wastes amended with cow dung, Environmental Research, 214(4): 114119, 2022.
doi: 10.1016/j.envres.2022.114119
[15] Edwards CA, Arancon NQ. Biology and ecology of earthworms: Fourth Edition, Biology and Ecology of Earthworms: Fourth Edition, 1- 567 2022.
doi: 10.1007/978-0-387-74943-3
[16] Ho TTK, Tra VT, Le TH, Nguyen NKQ, Tran CS. Nguyen PT, Vo TDH, Thai VN, Bui XT. Compost to improve sustainable soil cultivation and crop productivity, Case Studies in Chemical and Environmental Engineering, 6: 100211, 2022.
doi: 10.1016/j.cscee.2022.100211
[17] Hamer U, Marschner B, Brodowski S, Amelung W. Interactive priming of black carbon and glucose mineralization, Organic Geochemistry, 35(7): 823-830, 2004.
doi: 10.1016/j.orggeochem.2004.03.003
[18] Blagodatskaya EV, Blagodatskya SA, Anderson TH, Kuzyakov Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies, Applied Soil Ecology, 37(1-2): 95-105, 2007.
doi: 10.1016/j.apsoil.2007.05.002
[19] Gajalakshmi S, Ramasamy EV, Abbasi S. Vermicomposting of different forms of water hyacinth by the earthworm Eudrilus eugeniae, Bioresource Technology, 82(2): 165-169, 2002.
doi: 10.1016/S0960-8524(01)00163-8
[20] Najar IA, Khan AB. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida, Environmental Science and Pollution Research, 20(9): 6406–6417, 2013.
doi: 10.1007/s11356-013-1687-9
[21] Najar IA, Khan AB, Hai, A. Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions, International Journal of Recycling of Organic Waste in Agriculture, 4: 73–83, 2015.
doi: 10.1007/s40093-015-0087-1
[22] Suthar S, Pandey B, Gusain R, Gaur RZ, Kumar K. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system, Science and Pollution Research, 24(1): 199-207, 2017.
doi: 10.1007/s11356-016-7770-2
[23] Devi C, Khwairakpam M. Bioconversion of Lantana camara by vermicomposting with two different earthworm species in monoculture, Bioresource Technology, 296: 122308, 2020.
doi: 10.1016/j.biortech.2019.122308
[24] Álvarez-Bernal D, Hernández MAL, Osben HRB, Ramos SMC, Mora M. Vermicompost as an alternative of management for water hyacinth, Revista Internacional de Contaminación Ambiental, 32(4): 425-433, 2016.
doi: 10.20937/RICA.2016.32.04.06
[25] Ansari AA, Rajpersaud J. Physicochemical changes during vermicomposting of water hyacinth (Eichhornia crassipes) and grass clippings, International Scholarly Research Network Soil Science, 2012: 984783, 2012.
doi: 10.5402/2012/984783
[26] Yatoo AM, Bhat SA, Ali MN, Baba ZA, Zaheen Z. Production of nutrient-enriched vermicompost from aquatic macrophytes supplemented with kitchen waste: assessment of nutrient changes, phytotoxicity, and earthworm biodynamics, Agronomy, 12: 1303, 2022.
doi: 10.3390/agronomy12061303
[27] Venter JM, Reinecke AJ. The life-cycle of the compost worm Eisenia fetida (Oligochaeta), South African Journal of Zoology, 23(3): 161-165, 1988.
doi: 10.1080/02541858.1988.11448096
[28] Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes, The Art of Scientific Computing. Cambridge University Press, Cambridge, 2007.
[29] Uhland RE. Rapid method for determining soil moisture, Soil Science Society of America Journal,15(C): 391-393,1951.
doi: 10.2136/sssaj1951.036159950015000C0088x
[30] Teixeira PC, Donagemma GK, Fontana A, Teixeira WG. Manual de métodos de análise de solo. Embrapa, Brasília, 2017.
URL: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-demetodos-de-analise-de-solo
[31] Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnology and Oceanography, 53(3): 955-969, 2008.
doi: 10.4319/lo.2008.53.3.0955
[32] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances, Analytica Chimica Acta, 337(2): 133-149, 1997.
doi: 10.1016/S0003-2670(96)00412-6
[33] Stevenson FJ. Humus chemistry: genesis, composition, reactions. John Wiley & Sons, New York, 1994.
[34] Schnitzer M, Khan SU. Humic substances in the environment. Marcel Dekker, New York, 1972.
[35] Alcarde JC. Manual de análise de fertilizantes. Fundação de Estudos Agrários Luiz de Queiróz, Piracicaba, 2009.
[36] MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Manual de métodos analíticos oficiais para fertilizantes minerais, orgânicos, organominerais e corretivos. MAPA, Brasília, 2017.
URL: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumosagricolas/fertilizantes/legislacao/manual-de-metodos_2017_isbn-978-85-7991-109-5.pdf
[37] Hammer O, Harper DAT, Ryan PD. PAST - Paleontological Statistics, ver. 1.81, 2008.
URL: https://www.nhm.uio.no/english/research/resources/past/
[38] Anjos JL, Aquino AM, Schiedeck G. Minhocultura e vermicompostagem: interface com sistemas de produção, meio ambiente e agricultura de base familiar, Embrapa, Brasília, 2015.
[39] Kumar G, Sharma JG, Goswami RK, Shrivastav AK, Tocher DR, Kumar N and Chakrabarti R. Freshwater macrophytes: a potential source of minerals and fatty acids for fish, poultry, and livestock, Frontiers in Nutrition, 9: 869425, 2022.
doi: 10.3389/fnut.2022.869425
[40] Park S, Cho KH. Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching process, Korean Journal of Biological Sciences, 7(4): 289-294, 2003.
doi: 10.1080/12265071.2003.9647718
[41] He Y, Song N, Jiang HL. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes, Environmental Science and Pollution Research, 25(10): 9928-9939, 2018.
doi: 10.1007/s11356-018-1267-0
[42] Karmegam N, Daniel T. Investigating efficiency of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen for vermicomposting of different types of organic substrates, Environmentalist, 29(3): 287-300, 2009.
doi: 10.1007/s10669-008-9195-z
[43] Pramanik P, Ghosh GK, Ghosal PK, Banik P. Changes in organic – C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants, Bioresource Technology, 98: 2485-2494. 2007.
doi: 10.1016/j.biortech.2006.09.017
[44] De Haan H. Use of ultraviolet spectroscopy, gel filtration, pyrolysis/mass spectrometry and numbers of benzoate-metabolizing bacteria in the study of humification and degradation of aquatic organic matter. In: Aquatic and terrestrial humic materials. Edited by Christman RF, Gjessing ET. Ann Arbor Science Publishers, Michigan, pp .165–182, 1983.
[45] Haddad G, El-Ali F, Mouneimne AH. Humic matter of compost: determination of humic spectroscopic ratio (E4/E6), Current Science International, 4(1): 56-72, 2015.
URL: https://www.curresweb.com/csi/csi/2015/56-72.pdf
[46] Grayson R, Holden, J. Continuous measurement of spectrophotometric absorbance in peatland streamwater in northern England: implications for understanding fluvial carbon fluxes, Hydrological Processes, 26(1): 27-39, 2012.
doi: 10.1002/hyp.8106
[47] Zandonadi DB, Busato JG. Vermicompost humic substances: technology for converting pollution into plant growth regulators, International Journal of Environmental Science and Engineering Research, 3(2): 73-84, 2012.
[48] Dominguez J, Edwards CA. Biology and ecology of earthworm species used for vermicomposting. In: Vermiculture Technology: Earthworms, organic wastes, and environmental management. Edited by Edwards CA, Arancon NQ, Sherman RL. CRC Press, Boca Raton, pp, 27-40, 2010.
[49] Elvira C, Goicoechea M, Sampedro L, Mato S, Nogales R. Bioconversion of solid paper-pulp mill sludge earthworms, Bioresource Technology, 57(2): 173–177, 1996.
doi: 10.1016/0960-8524(96)00065-X
[50] Atiyeh RM, Edwards CA, Subler S, Metzger JD. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth, Bioresource Technology, 78(1): 11-20, 2001.
doi: 10.1016/S0960-8524(00)00172-3
[51] Cotta JAO, Carvalho NLC, Brum TS, Rezende MOO. Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem, Engenharia Sanitaria e Ambiental, 20(1): 65-78, 2015.
doi: 10.1590/S1413-41522015020000111864
[52] Curry JP, Schmidt O. The feeding ecology of earthworms – a review, Pedobiologia, 50(6): 463-477, 2007.
doi: 10.1016/j.pedobi.2006.09.001
[53] Vadounnou DDFV, Kpogue DNS, Tossavi EE, Mennesah GA, Fiogbe ED. Effect of animal waste and vegetable compost on production and growth of earthworm (Eisenia fetida) during vermiculture, International Journal of Recycling of Organic Waste in Agriculture, 5(1):
87-92, 2016.
doi: 10.1007/s40093-016-0119-5
[54] Pandit L, Sethi D, Pattanayak, SK, Nayak Y. Bioconversion of lignocellulosic organic wastes into nutrient rich vermicompost by Eudrilus eugeniae, Bioresource Technology Reports, 12: 100580, 2020.
doi: 10.1016/j.biteb.2020.100580
[55] Lopes AS. Manual internacional de fertilidade do solo. Potafós, Piracicaba, 1998.
[56] Mendes AMS. Introdução a fertilidade do solo. In: Curso de Manejo e Conservação do Solo e da água, 2007, MAPA; SFA-BA, Embrapa Semi-Árido; Embrapa Solos – UEP, 2007.
URL: https://www.alice.cnptia.embrapa.br/alice/handle/doc/159197
[57] Prezotti LC, Guarçoni AM. Guia de interpretação de análise de solo e foliar. Incaper, Vitória, 2013.
URL: https://biblioteca.incaper.es.gov.br/digital/bitstream/item/40/1/Guia-interpretacaoanalise-solo.pdf
[58] Kannadasan N, Natarajan N, Anbusaravanan N, Sekar P, Krishnamoorthy R. Assessment of sustainable vermiconversion of water hyacinth by Eudrilus eugeniae and Eisenia fetida, Journal of Applied and Natural Science, 5(2): 451-454, 2013.
doi: 10.31018/jans.v5i2.352
[59] Sakthika T, Sornalaksmi V. Nutrients analysis of vermicompost of water hyacinth supplemented with probiotics, Acta Scientific Agriculture, 3(10): 10-13, 2019.
doi: 10.31080/ASAG.2019.03.0637
How to Cite
Kotsubo, K., Bianchini Júnior, I., Henrique Lanzi Saulino , H., & da Cunha Santino, M. B. (2024). Is enrichment with inorganic and organic compounds feasible for improving the quality of vermicomposting using water hyacinth biomass?. Universitas Scientiarum, 29(1), 33–55. https://doi.org/10.11144/Javeriana.SC291.iewi
Section
Ecology