Global Antiviral Peptide Research: A Bibliometric Analysis and Future Perspective (1951-2022)
PDF

Keywords

antiviral peptide; bibliometric analysis; global publications; research patterns and trends; Scopus database.

How to Cite

Global Antiviral Peptide Research: A Bibliometric Analysis and Future Perspective (1951-2022). (2024). Universitas Scientiarum, 29(3), 229-251. https://doi.org/10.11144/Javeriana.SC293.gapr
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Antiviral peptides (AVPs) are small molecules that can inhibit the replication of viruses in living cells and are being investigated as potential alternatives to traditional antiviral drugs. The development of novel antiviral agents is of the highest concern because some traditional antiviral medications can be ineffective and cause the emergence of resistant viruses. A bibliometric study of the global distribution of research on this topic was carried out to comprehend the research trends and patterns in the field of AVPs. Data on the number of publications, citations, and authors were collected from the Scopus database for the period 1952-2022. Overall, 10,279 documents were published, with 146 issued per year. The United States released the most documents, followed by China, Germany, and the United Kingdom. Since 2001, there has been a substantial increase in global publications on AVPs, with prominent themes including virology, genetics, protease inhibitors, polypeptide antimicrobial agents, and viral entry. This bibliometric study covers global AVP research from 1952 through 2022 and can be used to guide future research in this field.

PDF

Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An overview of antiviral peptides and rational biodesign considerations, BioDesign Research; 2022:1–19, 2022.

https://doi.org/10.34133/2022/9898241

Agarwal G, Gabrani R. Antiviral peptides: identification and validation, International Journal of Peptide Research and Therapeutics, 27:149–168, 2021.

https://doi.org/10.1007/s10989-020-10072-0

Sukmarini L. Antiviral peptides (AVPs) of marine origin as propitious therapeutic drug candidates for the treatment of human viruses, Molecules, 27: 2619, 2022.

https://doi.org/10.3390/molecules27092619

WHO. Influenza (Seasonal). 2023.

URL: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

WHO. Hepatitis in the South-East Asia Region. 2022.

URL: https://www.who.int/southeastasia/health-topics/hepatitis

WHO. HIV. 2022.

URL: https://www.who.int/news-room/fact-sheets/detail/hiv-aids#:~:text=In%202021%2C%20650%20000%20%5B510,2.0%20million%5D%20people%20acquired%20HIV

WHO. The true death toll of COVID-19: estimating global excess mortality. 2022.

URL: https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-excess-mortality

Meganck RM, Baric RS. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases, Nature Medicine, 27: 401–410, 2021.

https://doi.org/10.1038/s41591-021-01282-0

Zareifopoulos N, Lagadinou M, Karela A, Kyriakopoulou O, Velissaris D. Neuropsychiatric effects of antiviral drugs methods of literature search, Cureus, 12: e9536, 2020.

https://doi.org/10.7759/cureus.9536

Razonable RR. Antiviral drugs for viruses other than human immunodeficiency virus, Mayo Clinic Proceedings, 86: 1009-1026, 2011.

https://doi.org/10.4065/mcp.2011.0309

Law MF, Ho, R, Law KWT, Cheung CKM. Gastrointestinal and hepatic side effects of potential treatment for COVID-19 and vaccination in patients with chronic liver disease, World Journal of Hepatology, 23(12): 1850-1874, 2021.

https://doi.org/10.4254/wjh.v13.i12.1850

Singh S, Chauhan P, Sharma V, Rao A, Kumbhar BV, Prajapati VK. Identification of multi-targeting natural antiviral peptides to impede SARS-CoV-2 infection, Structural Chemistry, 34: 1743-1758.

Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs david, Chemical biology & Drug Design, 81 (1): 136–147, 2013.

https://doi.org/10.1111/cbdd.12055

Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment, Journal of Biomedical Science, 24: 21, 2017.

https://doi.org/10.1186/s12929-017-0328-x

Sofyantoro F, Kusuma HI, Vento S, Rademaker M, Frediansyah A. Global research profile on monkeypox-related literature (1962-2022): A bibliometric analysis, Narra J, 2 (3): 1–16, 2022.

Priyono DS, Sofyantoro F, PutriWA, Septriani NI, Rabbani A, Arisuryanti T. A Bibliometric Analysis of Indonesia biodiversity identification through DNA barcoding research from 2004-2021 a bibliometric analysis of Indonesia biodiversity identification through DNA

barcoding research, Chiang Mai University Journal of Natural Sciences, 22 (1): e2023006, 2022.

Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric analysis of literature in snake venom-related research worldwide (1933– 2022), Animals, 12 (16): 1–20, 2022.

https://doi.org/10.3390/ani12162058

Sa’adah NSS, Alwandri H, Sukirno, Nuringtyas TR, Nugroho LH. A Bibliometric análisis of botanical insecticides for Lepidopteran insects over the period 1985-2022, Plant Science Today, 10 (1):232–241, 2022.

Sofyantoro F, Frediansyah A, Priyono DS, Putri WA, Septriani NI, Wijayanti N, Ramadaningrum WA, Turkistani SA, Garout M, Aljeldah M, Al Shammari BR, Alwashmi SS, Alfaraj AH, Alawfi A, Alshengeti A, Aljohani MH, Aldossary S, Rabaan AA. Growth in chikungunya virus - related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: a bibliometric and graphical analysis, Globalization and Health, 19: 9, 2023.

https://doi.org/10.1186/s12992-023-00906-z

Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses, The FASEB journal, 22 (2): 338–342, 2008.

Van Eck NJ,Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, 84 (2): 523–38, 2010.

Lai CC, Shih TP,KoWC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, International Journal of Antimicrobial Agents, 55: 105924, 2020.

Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents, Clinical Microbiology Reviews, 19 (3): 491–511, 2006.

https://doi.org/10.1128/CMR.00056-05

Murali-Krishna K, Altman JD, Suresh M, Sourdive JD, Zajac AL, Miller JD, Slansky J, Ahmed R. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection, Immunity, 8: 177–187, 1998.

https://doi.org/10.1016/S1074-7613(00)80470-7

Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, Walker BD. Vigorous HIV-1-Specific CD4+ T cell responses associated with control of viremia, Science, 278: 1447–1450, 1997.

https://doi.org/10.1126/science.278.5342.1447

Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles, Journal of Controlled Release, 132: 171–183, 2008.

https://doi.org/10.1016/j.jconrel.2008.05.010

Walker LM. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target, Science, 326 (5950): 285–9, 2009.

https://doi.org/10.1126/science.1178746

Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS,Wu X, Shaw GM, Kappes JC. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusión inhibitor (T-20) monotherapy, Antimicrobial Agents and Chemotherapy, 46 (6): 1896–1905, 2002.

https://doi.org/10.1128/AAC.46.6.1896-1905.2002

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virology Journal, 2: 69, 2005.

https://doi.org/10.1186/1743-422X-2-69

Wang G, Li X, Wang Z. APD3: The antimicrobial peptide database as a tool for research and education, Nucleic Acids Research, 44 (D1): D1087–D1093, 2016.

https://doi.org/10.1093/nar/gkv1278

Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, Cani DS, Cerini M, Farina D, Gavvazi E, Maroldi R, Adamo M, Ammirati E, Sinagra G, Lombardi CM, Metra M. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19), JAMA Cardiology, 5 (7): 819–824, 2020.

https://doi.org/10.1001/jamacardio.2020.1096

Kahn JS, Mcintosh K. History and Recent Advances in Coronavirus Discovery, The Pediatric Infectious Disease Journal,24 (11): S223–S227, 2005.

https://doi.org/10.1097/01.inf.0000188166.17324.60

Peiris JS, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang DNC, Yung RWH, Ng TK, Yuen KY. Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet, 361: 1319–25, 2020.

WHO. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. 2022.

https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-

Mahendran ASK, Lim YS, Fang C, Loh H, Le CF. The Potential of Antiviral Peptides as COVID-19 Therapeutics, Frontiers in Microbiology, 11: 575444, 2020.

https://doi.org/10.3389/fphar.2020.575444

Riedelt B, Brownt DT. Novel antiviral activity found in the media of sindbis virus-persistently infected mosquito (Aedes albopictus) cell cultures, Journal of Virology, 29 (1): 51–60, 1979.

Lee YJ, Shirkey JD, Park J, Bisht K, and Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations, BioDesign Research, 2022: 1–19, 2022.

Zhao W, Li X, Yu Z, Wu S, Ding L, Liu J. Identification of lactoferrin-derived peptides as potential inhibitors against the main protease of SARS-CoV-2, LWT, 154: 112684.

Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, and Franco OL Antiviral peptides as promising therapeutic drugs, Cellular and Molecular Life Sciences, 76: 3525–3542, 2019.

https://doi.org/10.1007/s00018-019-03138-w

Borges PHO, Ferreira SB, Silva FP. Recent advances on targeting proteases for antiviral

development, Viruses, 16(3): 366, 2024.

https://doi.org/10.3390/v16030366

Lotke R, Petersen M, Sauter D. Restriction of viral glycoprotein maturation by celular protease inhibitors, Viruses, 16(3): 332, 2024.

https://doi.org/10.3390/v16030332

Bhullar KS, Nael MA, Elokely KM, Drews SJ,Wu J. Structurally modified bioactive peptide inhibits SARS-CoV-2 lentiviral particles expression, Pharmaceutics, 14(10): 2045, 2024.

https://doi.org/10.3390/pharmaceutics14102045

Zhao H, To KKW, Lam H, Zhang C, Peng Z, Meng X, Wang X, Zhang AJ, Yan B, Cai J, Yeung ML, Chan JFW, Yuen KY. A trifunctional peptide broadly inhibits SARS-CoV-2 delta and omicron variants in hamsters, Cell Discovery, 8(62): 1-15, 2022.

https://doi.org/10.1038/s41421-022-00428-9

Bagwe PV, Bagwe PV, Ponugoti SS, Joshi SV. Peptide-based vaccines and therapeutics for COVID-19, International Journal of Peptide Research and Therapeutics, 28(94): 1-16, 2022.

https://doi.org/10.1007/s10989-022-10397-y

Henriques, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, Sonza S, Tachedjian G, Castanho ARB, Daly NL, Craik DJ. Decoding the Membrane Activity of the Cyclotide Kalata B1, The Journal of Biological Chemistry, 286 (27): 24231–24241, 2011.

https://doi.org/10.1074/jbc.M111.253393

Wong JH, Ng TB. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase, Peptides, 26: 1120–1126, 2005.

https://doi.org/10.1016/j.peptides.2005.01.003

Yuan L, Zhang S, Peng J, Li Y, Yang Q. Synthetic surfactin analogues have improved anti-PEDV properties, PLoS ONE, 14 (4): e0215227, 2019.

Zampella A, Sepe V, Luciano P, Bellotta F, Chiara M, D’Auria MV, Jepsen T, Petek S, Adeline MT, Laprévote O, Aubertin AM, Debitus C, Poupat C, Ahond A. Homophymine A, an Anti-HIV Cyclodepsipeptide from the Sponge Homophymia sp, The Journal of Organic Chemistry, 73: 5319–5327, 2008.

Plaza A, Bifulco G, Masullo M, Lloyd J, Keffer JL, Colin PL, Hooper JN, Bell LJ, Bewley CA. Mutremdamide A and Koshikamides C–H, Peptide Inhibitors of HIV-1 Entry from Different Theonella Species, The Journal of Organic Chemistry, 75 (13): 4344–4355, 2012.

https://doi.org/10.1021/jo100076g

Lu Z, Wagoner RM, Harper MK, Baker HL, Hooper JN, Bewley CA, Ireland CM. Mirabamides E - H, HIV-Inhibitory Depsipeptides from the Sponge Stelletta clavosa, Journal of Natural Products, 74: 185–193, 2011.

Holthausen DJ, Lee SH, Kumar VTV, Bouvier NM, Krammer F, Ellebedy AH, Wrammert J, Lowen AC, George S, Pillai MR, Jacob J. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses, Immunity, 46: 587–595, 2017.

https://doi.org/10.1016/j.immuni.2017.03.018

Doss M, White MR, Tecle T, Gantz D, Crouch EC, Jung G, Ruchala P, Waring AJ, Lhrer RI, Hartshorn KL. Interactions of Alpha-, Beta-, and Theta-Defensins with Influenza A Virus and Surfactant Protein D, The Journal of Immunology, 182 (12): 7878–7887, 2009.

https://doi.org/10.4049/jimmunol.0804049

Rothan HA, Bahrani H, Rahman NA, Yusof R. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus, BMC Microbiology, 14:1-10, 2014.

https://doi.org/10.1186/1471-2180-14-140

Monteiro JMC, Oliveira MD, Dias RS, Nacif-Marcal L, Feio RN, Ferreira SO, Oliveira LL, Silva CC, Paula SO. The antimicrobial peptide HS-1 inhibits dengue virus infection, Virology, 514: 79–87, 2018.

https://doi.org/10.1016/j.virol.2017.11.009

Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, Yang J, Zhang Y, Shi W, Cao Z, Wu Y, Yan H, Li W. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses, Peptides, 32: 1518–1525, 2011.

https://doi.org/10.1016/j.peptides.2011.05.015

Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, Li W, Cao Z. Mucroporin-M1 Inhibits Hepatitis B Virus Replication by Activating the Mitogen-activated Protein Kinase (MAPK) Pathway and Down-regulating HNF4 in Vitro and in Vivo, The Journal of Biological Chemistry, 287 (36): 30181–30190, 2012.

https://doi.org/10.1074/jbc.M112.370312

Zeng Z, Zhang R, Hong W, Cheng Y, Wang H, Lang Y, Ji Z, Wu Y, Li W, Xie Y, Cao Z. Histidine-rich modification of a Scorpion-derived peptide improves bioavailability and inhibitory activity against HSV-1, Theranostics, 8 (1): 199–211, 2018.

https://doi.org/10.7150/thno.21425

Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P. Antiviral and antitumor peptides from insects, Proceedings of the National Academy of Sciences of the United States of America, 99 (20): 12628–12632, 2002.

Marcocci ME, Amatore D, Villa S, Casciaro B, Aimola P, Franci G, Grieco P, Galdiero M, Palamara AT, Mangoni ML, Nencioni L. The amphibian antimicrobial peptide temporin B inhibits In Vitro herpes simplex virus 1 infection, Antimicrobial Agents and Chemotherapy, 62: e02367-17, 2018.

Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan, Toxins, 7: 1126–1150, 2015.

https://doi.org/10.3390/toxins7041126

Matanic VCA, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus, International Journal of Antimicrobial Agents, 23: 382–389, 2004.

https://doi.org/10.1016/j.ijantimicag.2003.07.022

Hood JL, Jallouk AP, Campbell N, Ratner L,Wickline SA. Cytolytic nanoparticles attenuate HIV-1 infectivity, Antiviral Therapy, 18: 95–103, 2013.

https://doi.org/10.3851/IMP2346

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Wahyu , Jajar, Fajar, Wulan, Sendi, Indah, Abdul Rahman, Yekti Asih Purwestri, Anjar, Tri Rini Nuringtyas