Abstract
Tropaeolum tuberosum, commonly known as cubio, mashua, or isaño, is an underutilized crop belonging to the group of Andean tubers. Cubios harbor ample genetic and morphological variability, with tubers exhibiting the most variation. Morphological characterization is a fundamental approach for assessing cubio genetic diversity and is the crucial first step in germplasm classification. It is also a determinant for in-situ conservation practices carried out by farmers. Therefore, this study aimed to explore the morphological diversity of 15 cubio tuber accessions from Colombia and Bolivia, and to validate the findings by comparing them with previously published accessions. Based on tuber morphological descriptors, we calculated the diversity index and conducted PCA and clustering analyses on two datasets, consisting of (i) Colombian and Bolivian morphotypes and (ii) the latter plus previously published cubio data. Similarities were found in both the morphological diversity index and morphotype clustering between datasets, reinforcing the validity of the proposed morphological traits despite the limited sample sizes and inherent subjectivity in characterization. All accessions were successfully classified as distinct morphotypes, underscoring the considerable morphological variation present in cubios. This morphological variation reflects the wide underlying genetic variability in this species and highlights its adaptability to changing environmental conditions.
[1] Watson JM, Flores AR. A synopsis of perennial tuberous Tropaeolum L. section Chilensia Sparre (Tropaeolaceae), including validation of three subsections and a new, reclassified natural hybrid, Herbetia, 64: 150–281, 2010.
[2] Bulacio E, Mercado MI, Ponessa GI. Morfología y anatomía de órganos vegetativos de Tropaeolum incisum (Tropaeolaceae), Lilloa, 54(2): 110–22, 2017.
[3] Bulacio E, Ayarde H. Aspectos ecológicos y distribución de Tropaeolum tuberosum ssp. silvestre (Tropaeolaceae) en Argentina. Boletín de La Sociedad Argentina de Botánica, 47(1-2): 97–101, 2012.
[4] Clavijo N, Combariza J, Barón MT. Recognizing rural territorial heritage: characterization of Andean tuber production systems in Boyacá. Agronomía Colombiana, 29(2): 507–14, 2011.
[5] Grau A, Dueñas RO, Cabrera CN, Hermann M. Mashua: Tropaeolum tuberosum Ruíz & Pav. Promoting the Conservation and Use of Underutilized and Neglected Crops 25, International Potato Center, Lima, Peru/International Plant Genetic Resources Institute, Rome, Italy, 2003.
[6] Malice M, Bizoux JP, Blas R, Baudoin JP. Genetic diversity of Andean tuber crop species in the in situ microcenter of Huanuco, Peru, Crop Science, 50 (5): 1915–1923. 2010.
https://doi.org/10.2135/cropsci2009.09.0476
[7] Ortega OR, Duran E, Arbizu C, Ortega R, Roca W, Potter D, Quiros CF. Pattern of genetic diversity of cultivated and non-cultivated mashua, Tropaeolum tuberosum, in the Cusco region of Perú, Genetic Resources and Crop Evolution, 54: 807–821, 2007. https://doi.org/10.1007/s10722-006-9160-y
[8] Morillo AC, Morillo Y, Leguizamo MF. Diversidad genética de ibias (Oxalis tuberosa Molina) y cubios (Tropaeolum tuberosum Ruíz y Pavón) en Boyacá, Temas Agrarios, 21(1): 44–53, 2016.
https://doi.org/10.21897/rta.v21i1.869
[9] Apaza-Ticona L, Tena-Pérez V, Bermejo-Benito P. Local/traditional uses, secondary metabolites and biological activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). Journal of Ethnopharmacology, 247: 112152, 2020.
https://doi.org/10.1016/J.JEP.2019.112152
[10] Clavijo N, Combariza J, Barón MT. Recognizing rural territorial heritage: characterization of Andean tuber production systems in Boyacá. Agronomía Colombiana, 29: 507–14, 2011.
[11] Fonseca-Hernandez LR, Márquez-Cardona M del P. Morphological and molecular characterization of cubios (Tropaeolum tuberosum Ruiz & Pavón) collected in two municipalities in Boyaca - Colombia. Universitas Scientiarum, 29: 82–95, 2024. https://doi.org/10.11144/JAVERIANA.SC291.MAMC
[12] Patiño F, Gonzales S, Iriarte V, Ramos J. Manejo agronómico de los cultivos de oca, papalisa e isaño. In: García W, Cadima X, editors. Manejo sostenible de la agrobiodiversidad de tubérculos andinos: Síntesis de investigaciones y experiencias en Bolivia, Cochabamba. PROINPA. Cochabamba, Bolivia 2003.
[13] Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives, Genetics Research International, 2015.
https://doi.org/10.1155/2015/431487
[14] Drisya Ravi RS, Nair BR, Siril EA. Morphological diversity, phenotypic and genotypic variance and heritability estimates in Moringa oleifera Lam.: a less used vegetable with substantial nutritional value, Genetic Resources and Crop Evolution, 68: 3241–3256, 2021.
https://doi.org/10.1007/s10722-021-01183-8
[15] Manrique I, Arbizu C, Vivanco F, Ramirez C, Chavez O, Tay D, Ellis D. Tropaeolum tuberosum Ruiz & Pav. Colección de germoplasma de mashua conservada en el Centro Internacional de la Papa (CIP), Centro Internacional de la Papa, Lima, Perú, 2014. https://doi.org/10.4160/9789290604310
[16] Royal Horticultural Society. RHS Large Colour Chart. Sixth edition. 2015.
[17] Simpson EH. Measurement of Diversity. Nature, 163:688, 1949.
https://doi.org/10.1038/163688a0
[18] Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis, Journal of Statistical Software, 25(1): 1–18, 2008.
https://doi.org/10.18637/jss.v025.i01
[19] R Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2023.
[20] Ziberna A, Kej ˘ zar N, Golob P. A Comparison of Different Approaches to Hierarchical ˘ Clustering of Ordinal Data. Metodoloski Zvezki ˘ , 1(1): 57–73, 2004.
[21] Quispe C, Mansilla R, Chacón A, Blas R. Análisis de la variabilidad morfológica del “Añu” Tropaeolum tuberosum Ruiz & Pavón procedente de nueve distritos de la región Cusco, Ecología Aplicada, 14(2): 211–222, 2015.
[22] Valle-Parra M, Lalaleo L, Pomboza-Tamaquiza P, Ramírez-Estrada K, Becerra-Martínez E, Hidalgo D. From morphological traits to the food fingerprint of Tropaeolum tuberosum through metabolomics by NMR, LWT, 119: 108869, 2020.
https://doi.org/10.1016/j.lwt.2019.108869
[23] Campos D, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: Native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas), Journal of the Science of Food and Agriculture, 86(10): 1481–1488, 2006.
https://doi.org/10.1002/jsfa.2529
[24] Chirinos R, Campos D, Arbizu C, Rogez H, Rees JF, Larondelle Y, Noratto G, Cisneros-Zevallos L. Effect of genotype, maturity stage and post-harvest storage on phenolic compounds, carotenoid content and antioxidant capacity of Andean mashua tubers (Tropaeolum tuberosum Ruiz & Pavón). Journal of the Science of Food and Agriculture, 87(3): 437–446, 2007.
https://doi.org/10.1002/jsfa.2719
[25] Wurr DCE, Fellows JR, Akehurst JM, Hambidge AJ, Lynn JR. The effect of cultural and environmental factors on potato seed tuber morphology and subsequent sprout and stem development. The Journal of Agricultural Science, 136(1): 55–63, 2001. https://doi.org/10.1017/S0021859600008431
[26] Edrris MK, Al-Gaadi KA, Hassaballa AA, Tola E, Ahmed KAM. Impact of soil compaction on the engineering properties of potato tubers. International Journal of Agricultural and Biological Engineering, 13(2): 163–167, 2020.
[27] Ibañez VN, Berli FJ, Masuelli RW, Bottini RA, Marfil CF. Influence of altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, leaf pigments and morphology in the wild potato species Solanum kurtzianum Bitter & Wittm collected from an elevational gradient. Plant Science, 261: 60–68, 2017.
https://doi.org/10.1016/J.PLANTSCI.2017.04.014
[28] Pissard A, Arbizu C, Ghislain M, Bertin P. Influence of Geographical Provenance on the Genetic Structure and Diversity of the Vegetatively Propagated Andean Tuber Crop, Mashua (Tropaeolum tuberosum), Highlighted by Intersimple Sequence Repeat Markers and Multivariate Analysis Methods. International Journal of Plant Sciences, 169(9): 1248–1260, 2008.
https://doi.org/10.1086/591979
[29] Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. QTL for tuber morphology traits in diploid potato. Journal of Applied Genetics, 59: 123–132, 2018.
https://doi.org/10.1007/s13353-018-0433-x
[30] Park J, Whitworth J, Novy RG. QTL identified that influence tuber length–width ratio, degree of flatness, tuber size, and specific gravity in a russet-skinned, tetraploid mapping population. Frontiers in Plant Science, 15: 1343632, 2024.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Maria del Pilar Márquez-Cardona, Wilson Terán-Pérez, Daniela Ruíz-Mateus