Evaluation of the CRISPR/Cas9 system as genome editing platform for the Mucopolysaccharidosis IV A using a strategy for induction of higher homologous recombination frequency
PDF

Keywords

AAVS1 locus, CRISPR/Cas9, Mucopolysaccharidosis IV A, homologous recombination

How to Cite

Evaluation of the CRISPR/Cas9 system as genome editing platform for the Mucopolysaccharidosis IV A using a strategy for induction of higher homologous recombination frequency. (2025). Universitas Scientiarum, 30, 82-106. https://doi.org/10.11144/
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Mucopolysaccharidosis IVA is a lysosomal storage disease caused by mutations in the gene encoding for the hydrolase N-acetylgalactose-6-sulfate sulfatase (GALNS). GALNS deficiency leads to a progressive buildup of partially degraded chondroitin-6-sulfate and keratan-6-sulfate within the lysosomes. Several therapeutic strategies are under evaluation. Recently, we validated the use of a CRISPR/Cas9 nickase-based GT for MPS IVA, recovering up to 40% of normal GALNS activity, which had a positive outcome on classical MPS IVA biomarkers. In this study, we extended our previous findings by using the co-delivery of the CRISPR/Cas9 system with the proteins E4orf6 or E1B, which are inhibitors of the non-homologous end-joining repair pathway that may favor an increase in the homology-directed repair mechanism. The CRISPR/Cas9 vectors were transfected on GM00593 and GM01361 human MPS IVA fibroblasts by using a lipofection-based delivery. After 30 days post-transfection with CRISPR/Cas9 systems in absence of the E4orf6 or E1B, we found an increase in the GALNS activity up to 4.17 and 11.2-fold when compared to untreated controls, for GM01361 and GM00593 respectively. Partial recovery of the lysosomal mass was achieved in human MPS IVA fibroblasts after treatment, while a modest reduction in oxidative stress was observed only for GM01361. Non-improvement on those parameters was detected when CRISPR/Cas9 plasmids expressing E4orf6 or E1B were transfected. Together, our results support the use of CRISPR/Cas9 as a potential GT-based strategy for the treatment of MPS IVA and highlight the importance of continuing to seek strategies to improve the impact of gene editing as a therapeutic approach.

PDF

[1] Coutinho MF, Lacerda L, Alves S. Glycosaminoglycan storage disorders: a review,

Biochemistry Research International, 471325, 2012.

https://doi.org/10.1155/2012/471325

[2] Khan S, Alméciga-Díaz CJ, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Mason

RW, Orii T, Tomatsu S. Mucopolysaccharidosis IVA and glycosaminoglycans, Molecular

Genetics and Metabolism, 120(1-2): 78-95, 2017.

https://doi.org/10.1016/j.ymgme.2016.11.007

[3] D˜ung VC, Tomatsu S, Montaño AM, Gottesman G, Bober MB, Mackenzie W, Maeda

M, Mitchell GA, Suzuki Y, Orii T. Mucopolysaccharidosis IVA: correlation between

genotype, phenotype and keratan sulfate levels, Molecular Genetics and Metabolism,

110(1-2): 129-138, 2013.

https://doi.org/doi:10.1016/j.ymgme.2013.06.008

[4] Montaño AM, Tomatsu S, Gottesman GS, Smith M, Orii T. International Morquio A

Registry: clinical manifestation and natural course of Morquio A disease, Journal of

Inherited Metabolic Disease, 30(2):165-174, 2007.

https://doi.org/10.1007/s10545-007-0529-7

[5] Tomatsu S, Yasuda E, Patel P, Ruhnke K, Shimada T, Mackenzie WG, Mason R, Thacker

MM, Theroux M, Montaño AM, Alméciga-Díaz CJ, Barrera LA, Chinen Y, Sly SW, Rowan

D, Suzuki Y, Orii T. Morquio A syndrome: diagnosis and current and future therapies,

Pediatric Endocrinology Reviews, 12 Suppl 1: 141-151, 2014.

[6] Leadley RM, Lang S, Misso K, Bekkering T, Ross J, Akiyama T, Fietz M, Giugliani R,

Hendriksz CJ, Hock LN, McGill J, Olaye A, Jain M, Kleijnen J. A systematic review of

the prevalence of Morquio A syndrome: challenges for study reporting in rare diseases,

Orphanet Journal of Rare Disease, 9: 173, 2014.

https://doi.org/10.1186/s13023-014-0173-x

[7] Çelik B, Tomatsu SC, Tomatsu S, Khan SA. Epidemiology of Mucopolysaccharidoses

Update, Diagnostics (Basel), 2021;11(2): 273, 2021.

https://doi.org/10.3390/diagnostics11020273

[8] Uribe-Ardila A, Ramirez-Borda J, Ayala A. Twenty years of Colombian experience with

enzymatic screening in patients with features of mucopolysaccharidosis, JIMD reports,

63(5): 475-483, 2022.

https://doi.org/10.1002/jmd2.12313

[9] Sistema de Vigilancia en Salud Pública (Sivigila). Enfermedades huérfanas - raras, Colombia,

periodo epidemiológico I 2021: Instituto Nacional de Salud, 2021.

https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES%

20HUERFANAS-RARAS%20PE%20I%202021.pdF

[10] Sistema de Vigilancia en Salud Pública (Sivigila). Enfermedades huérfanas - raras, Colombia,

periodo epidemiológico VI 2022: Instituto Nacional de Salud, 2022.

https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES%

20HUERFANAS%20PE%20VI%202022.pdf

[11] Burton BK, Berger KI, Lewis GD, Tarnopolsky M, Treadwell M, Mitchell JJ, Muschol N,

Jones SA, Sutton VR, Pastores GM, Lau H, Sparkes R, Genter F, Shaywitz AJ, Harmatz

P. Safety and physiological effects of two different doses of elosulfase alfa in patients with

morquio a syndrome: A randomized, double-blind, pilot study, American Journal of Medical

Genetics. Part A, 167A(10): 2272-2281, 2015.

https://doi.org/10.1002/ajmg.a.37172

[12] Hendriksz CJ, Burton B, Fleming TR, Harmatz P, Hughes D, Jones SA, Lin SP,

Mengel E, Scarpa M, Valayannopoulos V, Giugliani R, Slasor P. Efficacy and safety of

enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome

(mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study, Journal of

Inherited Metabolic Disease, 37(6): 979-990, 2014.

https://doi.org/10.1007/s10545-014-9715-6

[13] Hendriksz CJ, Giugliani R, Harmatz P, Mengel E, Guffon N, Valayannopoulos V, Parini

R, Hughes DA, Pastores GM, Lau HA, Al-Sayed MD, Raiman J. Multi-domain impact of

elosufase alfa in Morquio A syndrome in the pivotal phase III trial, Molecular Genetics and

Metabolism, 114(2): 178-185, 2015.

https://doi.org/10.1016/j.ymgme.2014.08.012

[14] Schweighardt B, Tompkins T, Lau K, Jesaitis L, Qi Y, Musson DG, Farmer P, Haller

C, Shaywitz AJ, Yanh K, O´Neill CA. Immunogenicity of Elosulfase Alfa, an Enzyme

Replacement Therapy in Patients With Morquio A Syndrome: Results From MOR-004, a

Phase III Trial, Clinical Therapeutics, 37(5):1012-1021.e6, 2015.

https://doi.org/10.1016/j.clinthera.2014.11.005

[15] Do Cao J,Wiedemann A, Quinaux T, Battaglia-Hsu SF, Mainard L, Froissart R, Bonnemains

C, Ragot S, Leheup B, Journeau P, Feillet F. 30 months follow-up of an early enzyme

replacement therapy in a severe Morquio A patient: About one case, Molecular Genetics

and Metabolism Reports, 9(42): 42-45, 2016.

https://doi.org/10.1016/j.ymgmr.2016.10.001

[16] Doherty C, Stapleton M, Piechnik M, Mason RW, MackenzieWG, Yamaguchi S, Kobayashi

H, Suzuki Y, Tomatsu S. Effect of enzyme replacement therapy on the growth of patients

with Morquio A, Journal of Human Genetics, 64(7):625-635, 2019.

https://doi.org/10.1038/s10038-019-0604-6

[17] Donida B, Marchetti DP, Biancini GB, Deon M, Manini PR, da Rosa HT, Moura DJ,

Saffi J, Bender F, Burin MG, Coitinho AS, Giugliani R, Vargas CR. Oxidative stress and

inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement

therapy, Biochimica et Biophysica Acta, 1852(5): 1012-1019, 2015.

https://doi.org/10.1016/j.bbadis.2015.02.004

[18] Chinen Y, Higa T, Tomatsu S, Suzuki Y, Orii T, Hyakuna N. Long-term therapeutic efficacy

of allogenic bone marrow transplantation in a patient with mucopolysaccharidosis IVA,

Molecular Genetics and Metabolism Reports, 1:31-41, 2014.

https://doi.org/10.1016/j.ymgmr.2013.11.002

[19] Taylor M, Khan S, Stapleton M, Wang J, Chen J, Wynn R, Yabe H, Chinen Y, Boelens JJ,

Mason RW, Kubaski F, Horovitz DDG, Barth AL, Serafini M, Bernardo ME, Koboyashi

H, Orii KE, Suzuki Y, Orii T, Tomatsu S. Hematopoietic Stem Cell Transplantation

for Mucopolysaccharidoses: Past, Present, and Future, Biology of Blood and Marrow

Transplantation, 25(7):e226-e246, 2019.

https://doi.org/10.1016/j.bbmt.2019.02.012

[20] Wang J, Luan Z, Jiang H, Fang J, Qin M, Lee V, Chen J. Allogeneic hematopoietic stem cell

transplantation in thirty-four pediatric cases of mucopolysaccharidosis-A ten-year report

from the China children transplant group, Biology of Blood and Marrow Transplantation,

22(11):2104-2108, 2016.

https://doi.org/10.1016/j.bbmt.2016.08.015

[21] Yabe H, Tanaka A, Chinen Y, Kato S, Sawamoto K, Yasuda E, Shintaku H, Suzuki Y, Orii

T, Tomatsu S. Hematopoietic stem cell transplantation for Morquio A syndrome, Molecular

Genetics and Metabolism, 117(2): 84-94, 2016.

https://doi.org/10.1016/j.ymgme.2015.09.011

[22] Tomatsu S, Sawamoto K, Alméciga-Díaz CJ, Shimada T, Bober MB, Chinen Y, Yabe H,

Montaño AM, Giugliani R, Kubaski F, Yasuda E, Rodríguez-López A, Espejo-Mojica AJ,

Sánchez OF, Mason RW, Barrera LA, MackenzieWG, Orii T. Impact of enzyme replacement

therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome,

Drug Desing Development and Therapy, 9:1937-1953, 2015.

https://doi.org/10.2147/DDDT.S68562

[23] Olarte-Avellaneda S, Cepeda Del Castillo J, Rojas-Rodriguez AF, Sánchez O,

Rodríguez-López A, Suárez García DA, Pulido LM, Alméciga-Díaz CJ. Bromocriptine

as a Novel Pharmacological Chaperone for Mucopolysaccharidosis IV A, ACS Medicinal

Chemistry Letters, 11(7):1377-1385, 2020.

https://doi.org/10.1021/acsmedchemlett.0c00042

[24] Almeciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodriguez-Lopez A, Guzman E,

Garzon R, Pimentel-Vera LN, Puentes-Tellez MA, Rojas-Rodriguez AF, Gorshkov K, Li

R, Zheng W. Identification of ezetimibe and pranlukast as pharmacological chaperones

for the treatment of the rare disease mucopolysaccharidosis type IVA, Journal of Medical

Chemistry, 62(13): 6175-6189, 2019.

https://doi.org/10.1021/acs.jmedchem.9b00428

[25] Sawamoto K, Tomatsu S. Development of Substrate Degradation Enzyme Therapy for

Mucopolysaccharidosis IVA Murine Model, International Journal of Molecular Sciences,

20(17): 4139, 2019.

https://doi.org/10.3390/ijms20174139

[26] Scheller EL, Krebsbach PH. Gene therapy: design and prospects for craniofacial regeneration,

Journal of Dental Research, 88(7): 585-596, 2009.

https://doi.org/10.1177/0022034509337480

[27] Gutiérrez MA, García-Vallejo F, Tomatsu S, Cerón F, Alméciga-Díaz CJ, Domínguez MC,

Barrera LA. Construction of an adenoassociated, viral derived, expression vector to correct

the genetic defect in Morquio A disease, Biomedica, 28(3): 448-459, 2008.

[28] Alméciga-Díaz CJ, Rueda-Paramo MA, Espejo AJ, Echeverri OY, Montaño A, Tomatsu S,

Barrera LA. Effect of elongation factor 1alpha promoter and SUMF1 over in vitro expression

of N-acetylgalactosamine-6-sulfate sulfatase, Molecular Biology Reports, 36(7):1863-1870,

2009.

https://doi.org/10.1007/s11033-008-9392-3

[29] Alméciga-Díaz CJ, Montaño AM, Tomatsu S, Barrera LA. Adeno-associated virus gene

transfer in Morquio A disease - effect of promoters and sulfatase-modifying factor 1, FEBS

Journal, 277(17): 3608-3619, 2010.

https://doi.org/10.1111/j.1742-4658.2010.07769.x

[30] Toietta G, Severini GM, Traversari C, Tomatsu S, Sukegawa K, Fukuda S, Kondo N, Tortora

P, Bordignon C. Various cells retrovirally transduced with N-acetylgalactosoamine-6-sulfate

sulfatase correct Morquio skin fibroblasts in vitro, Human Gene Therapy, 12(16): 2007-2016,

2001.

https://doi.org/10.1089/104303401753204571

[31] Puentes-Tellez MA, Sanchez OF, Rojas-Rodriguez F, Benincore-Florez E, Barbosa H,

Almeciga-Diaz CJ. Evaluation of HIV-1 derived lentiviral vectors as transductors of

Mucopolysaccharidosis type IV a fibroblasts, Gene, 780:145527, 2021.

https://doi.org/10.1016/j.gene.2021.145527

[32] Gutierrez M, Garcia-Vallejo F, Tomatsu S, Ceron F, Alméciga-Díaz C, Domínguez M,

Barrera LA. Construcción de un vector de expresión derivado de virus adenoasociados

para corregir in vitro el defecto genético en la enfermedad de Morquio A, Biomedica,

28(3):448-459, 2008.

[33] Almeciga CJ, Montaño AM, Tomatsu S, Barrera LA. Contribución colombiana al

conocimiento de la enfermedad de Morquio A. Bogotá: MEDICINA; 2012.

[34] Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, Tomatsu

S. Liver-Targeted AAV8 Gene Therapy Ameliorates Skeletal and Cardiovascular Pathology

in a Mucopolysaccharidosis IVA Murine Model, Molecular Therapy Methods and Clinical

Development, 18: 50-61, 2020.

https://doi.org/10.1016/j.omtm.2020.05.015

[35] Hernández A, Velásquez O, Leonardi F, Soto C, Rodríguez A, Lizaraso L, Mosquera A,

Bohórquez J, Coronado A, Espejo A, Sierra R, Sánchez OF, Alménciga-Díaz CJ, Barrera

LA. Effect of culture conditions and signal peptide on production of human recombinant

N-acetylgalactosamine-6-sulfate sulfatase in Escherichia coli BL21, Journal of Microbiology

and Biotechnology, 23(5): 689-698, 2013.

https://doi.org/10.4014/jmb.1211.11044

[36] Bertolin J, Sanchez V, Ribera A, Jaen ML, Garcia M, Pujol A, Sánchez X, Muñoz S, Marcó

S, Pérez J, Elias G, León X, Roca C, Jimenez V, Otaegui P, Mulero F, Navarro M, Ruberte J,

Bosch F. Treatment of skeletal and non-skeletal alterations of Mucopolysaccharidosis type

IVA by AAV-mediated gene therapy, Nature Communications, 12(1): 5343, 2021.

https://doi.org/10.1038/s41467-021-25697-y

[37] Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM.

RNA-guided human genome engineering via Cas9, Science, 339(6121): 823-826, 2013.

https://doi.org/10.1126/science.1232033

[38] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with

CRISPR-Cas9, Science, 346(6213):1258096, 2014.

https://doi.org/10.1126/science.1258096

[39] Leal AF, Espejo-Mojica AJ, Sanchez OF, Ramirez CM, Reyes LH, Cruz JC, Alméciga-Díaz

CJ. Lysosomal storage diseases: current therapies and future alternatives, Journal of

Molecular Medicine, 98(7): 931-946, 2020.

https://doi.org/10.1007/s00109-020-01935-6

[40] Mei Y, Wang Y, Chen H, Sun ZS, Ju XD. Recent Progress in CRISPR/Cas9 Technology,

Journal of Genetics and Genomics, 43(2):63-75, 2016.

https://doi.org/10.1016/j.jgg.2016.01.001

[41] Ding Y, Wang KF, Wang WJ, Ma YR, Shi TQ, Huang H, Ji XJ. Increasing the homologous

recombination efficiency of eukaryotic microorganisms for enhanced genome engineering,

Applied Microbiology and Biotechnology, 103(11): 4313-4324, 2019.

https://doi.org/10.1007/s00253-019-09802-2

[42] Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. Increasing the

efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in

mammalian cells, Nature Biotechnology, 33(5): 543-548, 2015.

https://doi.org/10.1038/nbt.3198

[43] Leal AF, Almeciga-Diaz CJ. Efficient CRISPR/Cas9 nickase-mediated genome editing in

an in vitro model of mucopolysaccharidosis IVA, Gene therapy, 30(1-2): 107-114, 2023.

https://doi.org/10.1038/s41434-022-00344-3

[44] Leal AF, Cifuentes J, Torres CE, Suarez D, Quezada V, Gomez SC, Cruz JC, Reyes LH,

Espejo-Mojica AJ, Alméciga-Díaz CJ. Delivery and assessment of a CRISPR/nCas9-based

genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by

magnetite-based nanoparticles, Scientific Reports, 12(1): 15045, 2022.

https://doi.org/10.1038/s41598-022-19407-x

[45] Barrow KM, Perez-Campo FM,Ward CM. Use of the cytomegalovirus promoter for transient

and stable transgene expression in mouse embryonic stem cells, Methods in Molecular

Biology, 329: 283-294, 2006.

https://doi.org/10.1385/1-59745-037-5:283

[46] Brinkman EK, van Steensel B. Rapid Quantitative Evaluation of CRISPR Genome Editing

by TIDE and TIDER, Methods in Molecular Biology, 1961: 29-44, 2019.

https://doi.org/10.1007/978-1-4939-9170-9_3

[47] de Carvalho TG, Schuh R, Pasqualim G, Pellenz FM, Filippi-Chiela EC, Giugliani R, Baldo

G, Matte U. CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts, Gene, 678:

33-37, 2018.

https://doi.org/10.1016/j.gene.2018.08.004

[48] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis,

Nature Methods, 9(7): 671-675, 2012.

https://doi.org/10.1038/nmeth.2089

[49] van Diggelen OP, Zhao H, Kleijer WJ, Janse HC, Poorthuis BJ, van Pelt J, Kamerling JP,

Galjaard H. A fluorimetric enzyme assay for the diagnosis of Morquio disease type A (MPS

IV A), Clinica Chimica Acta, 187(2): 131-139, 1990.

https://doi.org/10.1016/0009-8981(90)90339-t

[50] Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential

off-target sites of Cas9 RNA-guided endonucleases, Bioinformatics, 30(10): 1473-1475,

2014.

https://doi.org/10.1093/bioinformatics/btu048

[51] Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith DJ, Skarnes WC, Iyer V. WGE: a

CRISPR database for genome engineering, Bioinformatics, 31(18): 3078-3080, 2015.

https://doi.org/10.1093/bioinformatics/btv308

[52] Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu

LP, Ji JY, Li JB, Ni JQ. Enhanced specificity and efficiency of the CRISPR/Cas9 system

with optimized sgRNA parameters in Drosophila, Cell Reports, 9(3): 1151-1162, 2014.

https://doi.org/10.1016/j.celrep.2014.09.044

[53] Yoshino Y, Endo S, Chen Z, Qi H, Watanabe G, Chiba N. Evaluation of site-specific

homologous recombination activity of BRCA1 by direct quantitation of gene editing

efficiency, Scientific Reports, 9(1): 1644, 2019.

https://doi.org/10.1038/s41598-018-38311-x

[54] Papapetrou EP, Schambach A. Gene Insertion Into Genomic Safe Harbors for Human Gene

Therapy, Molecular Therapy, 24(4): 678-684, 2016.

https://doi.org/10.1038/mt.2016.38

[55] Tomatsu S, Montaño AM, Ohashi A, Gutierrez MA, Oikawa H, Oguma T, Dung VC,

Nishioka T, Orri T, Sly WS. Enzyme replacement therapy in a murine model of Morquio A

syndrome, Human Molecular Genetics, 17(6): 815-824, 2008.

https://doi.org/10.1093/hmg/ddm353

[56] Herreno-Pachon AM, Sawamoto K, Stapleton M, Khan S, Piechnik M, Alvarez JV, Tomatsu

S. Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in

Mucopolysaccharidosis IVA Mice, Human Gene Therapy, 35(23-24):955-968, 2024.

https://doi.org/10.1089/hum.2024.096

[57] Donida B, Marchetti DP, Jacques CED, Ribas G, Deon M, Manini P, da Rosa HT, Moura

DJ, Saffi J, Giugliani R, Vargas CR. Oxidative profile exhibited by Mucopolysaccharidosis

type IVA patients at diagnosis: Increased keratan urinary levels, Molecular Genetics and

Metabolism Reports, 11:46-53, 2017.

https://doi.org/10.1016/j.ymgmr.2017.04.005

[58] Puentes A. Evaluation of HIV - 1 derived lentiviral vectors as transductors of MPS IVA

fibroblasts. 2018.

[59] Lieberman AP, Puertollano R, RabenN, Slaugenhaupt S,Walkley SU, BallabioA.Autophagy

in lysosomal storage disorders, Autophagy, 8(5):719-730, 2012.

https://doi.org/10.4161/auto.19469

[60] Raup A, Jérôme V, Freitag R, Synatschke CV, Müller AH. Promoter, transgene, and cell

line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars,

Biotechnology Reports, 11: 53-61, 2016.

https://doi.org/10.1016/j.btre.2016.05.003

[61] Hirotsune S, Kiyonari H, Jin M, Kumamoto K, Yoshida K, Shinohara M, Watanabe H,

Wynshaw BA, Matsuzaki F. Enhanced homologous recombination by the modulation of

targeting vector ends, Scientific Reports, 10(1): 2518, 2020.

https://doi.org/10.1038/s41598-020-58893-9

[62] Tran NT, Bashir S, Li X, Rossius J, Chu VT, Rajewsky K, Kühn R. Enhancement of

Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors,

Frontiers in Genetics, 10: 365, 2019.

https://doi.org/10.3389/fgene.2019.00365

[63] Leal A, Herreno-Pachón A, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current

Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches,

International Journal of Molecular Sciences, 25(5): 2456, 2024.

https://doi.org/10.3390/ijms25052456

Universitas

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Diego Alejandro Suárez García, Andrés Felipe Leal Bohórquez, Carlos Javier Almecíga Diáz