Abstract
Industrial textile effluents containing azo dyes pose a major environmental challenge due to their persistence and toxicity. This study evaluated the capacity of a native white-rot fungus (Lentinus sp.) to treat a real textile effluent polluted with an azo dye (Red 40) in a packed-bed bioreactor. Fungal biomass was immobilized on low-cost lignocellulosic supports (Luffa cylindrica), and pine sawdust was added as a biological inducer to stimulate ligninolytic enzyme production. Treatment conditions were first optimized in Erlenmeyer flasks (0.15 L), achieving 94.0 ± 0.1 % decolorization. Under scaled-up conditions (6 L, 30 ◦C, 12-day hydraulic retention time, batch mode, no agitation), the system removed 61.5 ± 0.2 % of dye color and reduced chemical oxygen demand (COD) by 99.0 ± 0.3 %. Enzymatic assays revealed manganese peroxidase activity, while laccase was not detected. Nuclear magnetic resonance (NMR) analysis confirmed structural modifications of the dye through azo bond cleavage. These findings demonstrate the potential of native ligninolytic fungi as sustainable and cost-effective biotechnological tools to treat azo dye-polluted industrial effluents, supporting their applicability at larger scales.
[1] Mostacero-León J, De La Cruz-Castillo A, Taramona-Ruíz L, Alva Calderón R, Seijas-Bernabé P, Mendoza Rodríguez R. Efecto citotóxico del colorante alimentario rojo 40 en nauplios de Artemia salina Leach. Revista de Investigaciones de la Universidad de Cordon Bleu, 7(2):60–66, 2020.
https://doi.org/10.36955/riulcb.2020v7n2.006
[2] Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LF, Bilal M, Chandra R, Bharagava RN. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2):18, 2021.
https://doi.org/10.1016/j.jece.2020.105012
[3] Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA, Elsamahy T, Jiao H, Fu Y, Sun J. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231:17, 2022.
https://doi.org/10.1016/j.ecoenv.2021.113160
[4] Gurbuz F, Ozcan A, Ciftci H, Acet O, Odabasi M. Treatment of textile effluents through bio-composite column: decolorization and COD reduction. International Journal of Environmental Science and Technology, 16(12):8653–8662, 2019.
https://doi.org/10.1007/s13762-019-02430-3
[5] Masum M.M.H., Islam M.B., Anowar M.R., et al. Assessment of textile industry effluents and their impact on local water bodies in an urban setting of Bangladesh. Discover Environment, 3:59, 2025.
https://doi.org/10.1007/s44274-025-00245-3
[6] Gaviria-Arroyave MI. Evaluating the scale-up of a reactor for the treatment of textile effluents using Bjerkandera sp. Revista Facultad de Ingeniería Universidad de Antioquia, 88:80–90, 2018.
https://doi.org/10.17533/udea.redin.n88a09
[7] Sudarshan S, Harikrishnan S, RathiBhuvaneswari G, Alamelu V, Aanand S, Rajasekar A, Govarthanan M. Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 134(2):23, 2022.
https://doi.org/10.1093/jambio/lxac064
[8] Kapoor RT, Danish M, Singh RS, Rafatullah M, HPS AK. Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43:17, 2021.
https://doi.org/10.1016/j.jwpe.2021.102255
[9] Martínez-Berra C, Díaz R, Sánchez-Minutti L, Díaz-Godínez G. Biodegradación de colorantes azo, Pleurotus ostreatus. Mexican Journal of Biotechnology, 3(1):43–59, 2018.
https://doi.org/10.29267/mxjb.2018.3.1.43
[10] Osorio Echavarría J, Vidal Benavides AI, Quintero Díaz JC. Decolorization of textile wastewater using the white rot fungi anamorph R1 of Bjerkandera sp. Revista Facultad de Ingeniería Universidad de Antioquia, (57):85–93, 2013.
https://doi.org/10.17533/udea.redin.14647
[11] Selim MT, Salem SS, Mohamed AA, El-Gamal MS, Awad MF, Fouda A. Biological treatment of real textile effluent using Aspergillus flavus and Fusarium oxysporium and their consortium along with the evaluation of their phytotoxicity. Journal of Fungi, 7(3):193, 2021.
https://doi.org/10.3390/jof7030193
[12] Bojalil Carrillo J, Fernanda Hernández Flores M, Rosalba Segura López L. Tecnologías microbianas de remoción de colorantes azoicos en la industria textil. RD ICUAP, 20:186–201, 2021.
https://doi.org/10.32399/icuap.rdic.2448-5829.2021.20.608
[13] Sandra M, Laura L. Production of lignocellulolytic enzymes from three white-rot fungi by solid-state fermentation and mathematical modeling. African Journal of Biotechnology, 14(15):1304–1317, 2015.
https://doi.org/10.5897/ajb2014.14331
[14] Sodaneath H, Lee JI, Yang SO, Jung H, Ryu HW, Cho KS. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. Journal of Environmental Science and Health Part A, 52(11):1099–1111, 2017.
https://doi.org/10.1080/10934529.2017.1340753
[15] Herath IS, Udayanga D, Jayasanka DJ, Hewawasam C. Textile dye decolorization by white rot fungi – A review. Bioresources Technology Reports, 25:17, 2024.
https://doi.org/10.1016/j.biteb.2023.101687
[16] Khan NA, Khan AH, Ahmed S, Farooqi IH, Alam SS, Ali I, Bokhari A, Mubashir M. Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment. Chemosphere, 298:12, 2022.
https://doi.org/10.1016/j.chemosphere.2022.134243
[17] Pakshirajan K, Singh S. Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus Phanerochaete chrysosporium. International Journal of Environmental and Pollution, 49(16):7484–7487, 2010.
https://doi.org/10.1021/ie1007079
[18] Holguín Múnera JF, Escobar Oquendo AE, Monroy Rodríguez RD, Muñoz Marín GM. Remoción de colorantes reactivos empleando el hongo Bjerkandera adusta. Informador Técnico, 81(2):142, 2018.
https://doi.org/10.23850/22565035.877
[19] Bayburt C, Karaduman AB, Yenice Gürsu B, Tuncel M, Yamaç M. Decolourization and detoxification of textile dyes by Lentinus arcularius in immersion bioreactor scale. International Journal of Environmental Science and Technology, 17(2):945–958, 2019.
https://doi.org/10.1007/s13762-019-02519-9
[20] Hossain K, Quaik S, Ismail N, Rafatullah M, Avasan M, Shaik R. Bioremediation and detoxification of the textile wastewater with membrane bioreactor using the white-rot fungus and reuse of wastewater. Iran Journal of Biotechnology, 14(3):154–162, 2016.
https://doi.org/10.15171/ijb.1216
[21] Arikan EB, Isik Z, Bouras HD, Dizge N. Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor. Bioresource Technology Reports, 7:6, 2019.
https://doi.org/10.1016/j.biteb.2019.100197
[22] Giorgio E, Fonseca MI, Tejerina MR, Ramos-Hryb AB, Sanabria N, Zapata PD, Villalba LL. Chips and sawdust substrates application for lignocellulolytic enzymes production by solid state fermentation. International Research Journal of Biotechnology, 3(7):120–127, 2012.
[23] Reddy MS, Anuradha A, Praveen K, et al. Influence of carbon, nitrogen sources, inducers, and substrates on ligninolytic enzyme production by white-rot fungi. Journal of Agriculture and Food Research, 7:7, 2022.
https://doi.org/10.1016/j.jafr.2022.100271
[24] American Public Health Association, American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water & Wastewater. 2a ed., American Public Health Association, 2005.
[25] Pakshirajan K, Singh S. Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus Phanerochaete chrysosporium. Industrial & Engineering Chemistry Research, 49(16):7484–7487, 2010.
https://doi.org/10.1021/ie1007079
[26] Sośnicka A, Kózka B, Makarova K, Giebułtowicz J, Klimaszewska M, Turło J. Optimization of white-rot fungi mycelial culture components for bioremediation of pharmaceutical-derived pollutants. Water, 14(9):1374, 2022.
https://doi.org/10.3390/w14091374
[27] Xiao P, Wu D, Wang J. Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. Environmental Science and Pollution Research, 29:1491–1507, 2022.
https://doi.org/10.1007/s11356-021-15787-1
[28] Hultberg M, Golovko O. Use of sawdust for production of ligninolytic enzymes by white-rot fungi and pharmaceutical removal. Bioprocess and Biosystems Engineering, 47:475–482, 2024.
https://doi.org/10.1007/s00449-024-02976-8
[29] Kijpornyongpan T, Schwartz A, Yaguchi A, Salvachúa D. Systems biology-guided understanding of white-rot fungi for biotechnological applications: a review. iScience, 25(7):24, 2022.
https://doi.org/10.1016/j.isci.2022.104640
[30] Mota TR, Kato CG, Peralta RA, Bracht A, de Morais GR, Baesso ML, de Souza CGM, Peralta RM. Decolourization of Congo Red by Ganoderma lucidum laccase: evaluation of degradation products and toxicity. Water, Air, & Soil Pollution, 226:11, 2015.
https://doi.org/10.1007/s11270-015-2612-2
[31] Madariaga-Mazón A, Hernández-Alvarado RB, Noriega-Colima KO, Osnaya-Hernández A, Martinez-Mayorga K. Toxicity of secondary metabolites. Physical Sciences Reviews, 4(12), 2019.
https://doi.org/10.1515/psr-2018-0116
[32] de Almeida AP, Macrae A, Ribeiro BD, do Nascimento RP. Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation. Brazilian Journal of Microbiology, 52(2):727–738, 2021.
https://doi.org/10.1007/s42770-021-00458-7
[33] Tavares MF, Avelino KV, Araújo NL, Marim RA, Linde GA, Colauto NB, do Valle JS. Decolorization of azo and anthraquinone dyes by crude laccase produced by Lentinus crinitus in solid state cultivation. Brazilian Journal of Microbiology, 51(1):99–106, 2019.
https://doi.org/10.1007/s42770-019-00189-w
[34] Doran PM. Principios de ingeniería de los bioprocesos. Acribia, 1998.
[35] Pakshirajan K, Singh S. Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus Phanerochaete chrysosporium. Industrial & Engineering Chemistry Research, 49(16):7484–7487, 2010.
https://doi.org/10.1021/ie1007079
[36] Qin W, Guo S, Li Q, Tang A, Liu H, Liu Y. Biotransformation of the azo dye Reactive Orange 16 by Aspergillus flavus A5P1: performance, genetic background, pathway, and mechanism. Journal of Hazardous Materials, 468:13, 2024.
https://doi.org/10.1016/j.jhazmat.2024.133562
[37] Raut S, Rajhans G, Sen SK, Barik A. Ligninolytic enzyme system of white-rot fungi: a natural approach to bioremediation and detoxification of azo dyes in textile wastewater. Environmental Engineering and Management Journal, 19(11), 2020.
https://doi.org/10.30638/eemj.2020.188
[38] Rekik H, Zaraî Jaouadi N, Bouacem K, Zenati B, Kourdali S, Badis A, Annane R, Bouanane-Darenfed A, Bejar S, Jaouadi B. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. International Journal of Biological Macromolecules, 125:514–525, 2019.
https://doi.org/10.1016/j.ijbiomac.2018.12.053
[39] Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S. Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus Trametes hirsuta D7 using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. Chemosphere, 313:12, 2022.
https://doi.org/10.1016/j.chemosphere.2022.137505
[40] Liu Y, Li C, Bao J, Wang X, Yu W, Shao L. Degradation of azo dyes with different functional groups in simulated wastewater by electrocoagulation. Water, 14(1):123, 2022.
https://doi.org/10.3390/w14010123
[41] Russian Chemical Reviews Editorial Board. NMR spectroscopy of azo dyes: structure, tautomerism and applications (review). Russian Chemical Reviews, 57(10):933–960, 1988.
[42] Mielgo I, López C, Moreira MT, Feijoo G, Lema JM. Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnology Progress, 19(2):325–331, 2003.
https://doi.org/10.1021/bp020136w
[43] Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S. Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus Trametes hirsuta D7 using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. Chemosphere, 313:137505, 2023.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Camila Gomez, Luisa Maria Munera Porras, Lida Arias Marín


