Publicado sep 9, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Rafael Monroig Vives

##plugins.themes.bootstrap3.article.details##

Resumen

Los seres humanos tienden a organizarse en grupos. Estos grupos deben ser sólidos para permitir una cooperación eficaz entre los individuos. Según algunos investigadores (Ostrom, 1990; Suárez et al., 2011), una identidad colectiva de grupo basada en símbolos culturales compartidos, una religión compartida o una lengua común es clave para fomentar la cooperación. Para investigar esta hipótesis, se extrajeron datos de Twitter y se crearon dos grafos de red (los nodos eran los usuarios de Twitter y los enlaces las relaciones entre usuarios) en torno a dos partidos políticos españoles durante las elecciones catalanas de 2017, Ciudadanos y Podemos. Por un lado, los miembros de la red de Ciudadanos compartían posicionamiento ideológico e identidad cultural colectiva (se identificaban con símbolos culturales españoles). Por otro lado, los miembros de Podemos en la red compartían posicionamiento ideológico, pero no identidad cultural (algunos de los usuarios de Podemos se identificaban con símbolos catalanes y otros con símbolos españoles). Los resultados de diferentes métricas de cohesión de la red (por ejemplo, el coeficiente de agrupación y la distancia media) muestran que la red de Ciudadanos estaba más cohesionada que la de Podemos.

Keywords

redes sociales, identidad colectiva, cohesión, elecciones catalanassocial networks, collective identity, cohesiveness, Catalan electionsredes sociais, identidade coletiva, coesão, eleições catalãs

References
Acemoglu, D., Egorov, G., & Sonin, K. (2013). A Political Theory of Populism. Quarterly Journal of economics, 128(2), 771-805. https://doi.org/10.1093/qje/qjs077

Adamic, L. A., & Glance, N. (2005). The Political Blogosphere and the 2004 U.S. Election: Divided they blog. Proc. 3rd Intl. Workshop on Link Discovery (LinkKDD), 36-43. https://doi.org/10.1145/1134271.1134277

Aragón, P., Kappler, E. K., Kaltenbrunner, A., Laniado, D., & Volkovich, Y. (2013). Communication Dynamics in Twitter during Political Campaigns: The Case of the 2011 Spanish National Election. Policy and Internet, 5(2), 183-206. https://doi.org/10.1002/1944-2866.POI327

Asch, S. E. (1956). Studies of Independence and Conformity: I. A Minority of one against a Unanimous Majority. Psychological Monographs: General and Applied, 70(9), 1-70. https://doi.org/10.1037/h0093718

Axelrod, R. (1986). An Evolutionary Approach to Norms. The American Political Science Review, 80(4), 1095-1111.

Barclay, P. (2013). Strategies for Cooperation in Biological Markets, Especially For Humans. Evolution and Human Behavior, 34(3), 164-175. https://doi.org/10.1016/j.evolhumbehav.2013.02.002

Bardhan, P. (2000). Irrigation and Cooperation: An Empirical Analysis of 48 Irrigation Communities in South India. Economic Development and Cultural Change, 48(4), 847-865. https://www.journals.uchicago.edu/doi/abs/10.1086/452480

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an Open Source Software for Exploring and Manipulating Networks [conferencia]. Proceedings of the Third International ICWSM Conference (pp. 361-362). Association for the Advancement of Artificial Intelligence. San Jose, Costa Rica.

Blondel, V., Guillaume, J., Lambiotte, R., & Lefebvre, E. (2008). Fast Unfolding of Communities in Large Networks. Journal of Statistical Mechanics: Theory and Experiment. https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/pdf

Borge-Holthoefer, J., Walid, M., Darwish, K., & Weber, I. (2015). Content and Network Dynamics behind Egyptian Political Polarization on Twitter. Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW 2015), Vancouver.

Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology, 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249

Cardenas, J. C., Stranlund, J. K., & Willis., C. E. (2000). Local Environmental Control and Institutional Crowding-Out. World Development, 28(10), 1719-1733. https://doi.org/10.1016/S0305-750X(00)00055-3

Centre d'Estudis d'opinió (2019). Baròmetre d’Opinió Política. 2a onada. http://www.rtve.es/contenidos/documentos/barometro_ceo_julio_2019.pdf

Conover, G., Ratkiewicz, F., Flammini, & Menczer. (2021). Political Polarization on Twitter. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 89-96. https://ojs.aaai.org/index.php/ICWSM/article/view/14126

Crowdford, S. E., & Ostrom, E. (1995). A Grammar of Institutions. American Political Science Review, 89(3), 582-600. https://doi.org/10.2307/2082975

Dávid-Barrett, T., & Dunbar, R. I. (2013). Processing Power Limits Social Group Size: Proceedings. Biological sciences, 280(1765), 20131151. https://doi.org/10.1098/rspb.2013.1151

Dawkins, R. (1989). The Selfish Gene. Oxford University Press.

Delton, A. W., Cosmides, L., G. M., E., T., & Tooby, J. (2012). The Psychosemantics of free Riding: Dissecting the Architecture of a Moral Concept. Journal of Personality and Social Psychology, 102(6), 1252-1270. https://doi.org/10.1037/a0027026

Deltona, A. W., Krasnowa, M. M., Cosmidesa, L., & Toobya, J. (2011). Evolution of Direct Reciprocity Under Uncertainty Can Explain Human Generosity in One-Shot Encounters. PNAS, 108(32). https://www.pnas.org/doi/full/10.1073/pnas.1102131108

DiGrazia, J., McKelvey, K., Bollen, J., & Rojas, F. (2013). More Tweets, More Votes: Social Media as a Quantitative Indicator of Political Behavior. PLOS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079449

Dunbar, R. I. (1992). Neocortex Size as a Constraint on Group Size in Primates. Journal of Human Evolution, 22(6), 469-493. https://doi.org/10.1016/0047-2484(92)90081-J

Festinger, L. (1950). The Spatial Ecology of Group Formation. En S. S. L. Festinger, Social Pressure in Informal Groups (pp. 146-161). Stanford University Press.

Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling Users’ Activity on Twitter Networks: Validation. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0022656

Greve, H., & Argote, L. (2015). Behavioral Theories of Organization. En J. D. Wright, International Encyclopedia of the Social & Behavioral Sciences (pp. 481-486). Elsevier.

Gross, J., & Dreu, C. K. (2019). The Rise and Fall of Cooperation Through Reputation and Group Polarization. Nature Communications, 10(776). https://doi.org/10.1038/s41467-019-08727-8

Guerrero Solé, F., & Lopez Gonzalez, H. (2017). Government Formation and Political Discussions in Twitter: An Extended Model for Quantifying Political Distances in Multiparty Democracies. Social Science Computer Review, 37(1), 3-21. https://doi.org/10.1177/0894439317744163

Haidt, J. (2012). The Righteous Mind: Why Good People Are Divided By Politics and Religion. Pantheon Books.

Hamid, N., Pretus, C., & Sheikh, H. (2019, December 13). How Catalonia’s Push for Independence has Scrambled Spanish Politics. Washington Post. https://www.washingtonpost.com/politics/2019/12/13/how-catalonias-push-independence-has-scrambled-spanish-politics/

Hamilton, W., Zhang, J., Danescu-Niculescu-Mizil, C., Jurafsky, D., & Leskovec, J. (2017). Loyalty in Online Communities. Proceedings of the International AAAI Conference on Web and Social Media, 11(1), 540-543. https://ojs.aaai.org/index.php/ICWSM/article/view/14972

Homans, G. (1958). Social Behavior as Exchange. American Journal of Sociology, 63(6), 597-606. https://www.jstor.org/stable/2772990

Jacomy, M., Venturini, T., Heymann, S., Bastian, M., & Muldoon, M. R. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9(6): e98679. https://doi.org/10.1371/journal.pone.0098679

Jenkins, R., Dowsett, A. J., & Burton, A. M. (2018). How Many Faces do People Know? Proc. R. Soc. B, 285, 20181319. https://doi.org/10.1098/rspb.2018.1319

Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a Social Network or a News Media? Proceedings of the 19th International Conference on World wide web (WWW '10). Association for Computing Machinery, New York, NY (pp. 591–600). https://doi.org/10.1145/1772690.1772751

Laclau, E. (2007). Ideology and post-Marxism. Journal of Political Ideologies, 11(2), 103-114. https://doi.org/10.1080/13569310600687882

McPherson, M., Smith-Lovin, L., & Cook, J. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27, 415-444. https://doi.org/10.1146/annurev.soc.27.1.415

Meyer, J. W., & Rowan, B. (1977). Institutionalized Organizations: Formal Structure as Myth and Ceremony. The American Journal of Sociology, 83(2), 340-363. http://www.jstor.org/stable/2778293

Monroig, R. (2018). Social Networks, Political Discourse and Polarization during the 2017 Catalan election. https://ir.lib.uwo.ca/etd/5556

Morrow, E. C., & Watts, R. (1996). Donor-initiated common pool resource institutions: The case of the Yanesha Forestry Cooperative. World Development, 24(10), 1641-1657. https://doi.org/10.1016/0305-750X(96)00064-2

Nagel, J. (1994). Constructing Ethnicity: Creating and Recreating Ethnic Identity and Culture. Social Problems, 41(1), 152-176. https://doi.org/10.1525/sp.1994.41.1.03x0430n

Newman, M. (2003). The Structure and Function of Complex Networks. SIAM Review, 45, 167-256. https://doi.org/10.1137/S003614450342480

Newman, M. (2010). Networks An Introduction. Oxford University Press.

Nowak, M. A. (2006). Five Rules for the Evolution. Science, 314(5805), 1560-1563. https://doi.org/10.1126/science.1133755

Ostrom, E. (1990). Governing the Commons: The evolution of Institutions for Collective Action. Cambridge University Press.

Ostrom, E. (2000). Collective Action and the Evolution of Social Norms. Journal of Economic Perspectives, 14(3), 137-158. https://www.aeaweb.org/issues/130

Peña-Lopez, I., Congosto, M., & Aragon, P. (2014). Spanish Indignados and the Evolution of the 15M Movement on Twitter: Towards Networked Para-Institutions. Journal of Spanish Cultural Studies, 15(2), 189-216. https://www.doi.org/10.1080/14636204.2014.931678

Piacentini, A. (2019). State Ownership and “State-Sharing”: The Role of Collective Identities and the Sociopolitical Cleavage between Ethnic Macedonians and Ethnic Albanians in the Republic of North Macedonia. Nationalities Papers, 47(3), 461-476. doi:10.1017/nps.2018.8

Pinker, S. (2007). The Evolutionary Social Psychology of Off-Record Indirect Speech Acts. Intercultural Pragmatics, 4(4), 437-461. https://doi.org/10.1515/IP.2007.023

Price, M. E., Cosmides, L., & Tooby, J. (2002). Punitive Sentiment as an Anti-Free Rider Psychological Device. Evolution and Human Behavior, 23, 203–231. https://www.cep.ucsb.edu/papers/freerider.pdf

Retamozo, M. (2017). La teoría del populismo de Ernesto Laclau: una introducción. Estudios Políticos, 41, 157-184. https://doi.org/10.1016/j.espol.2017.02.002

Rodrigues, A., & Newcomb, T. M. (1980). The Balance Principle: Its Current State and its Integrative Function in Social Psychology. Revista Interamericana de Psicología, 14(2), 85–136. https://psycnet.apa.org/record/1982-23513-001

Sáinz, J. (2017, septiembre 05). El “sí” ganará con un 72% y un 50% de participación si se celebra el referéndum. https://www.elespanol.com/espana/politica/20170904/244226382_0.html

Schlag, K. H. (1998). Why Imitate, and If So, How? Journal of Economic Theory, 78(1), 130-156. https://doi.org/10.1006/jeth.1997.2347

Serrano, I. (2013). Just a Matter of Identity? Support for Independence in Catalonia. Regional & Federal Studies, 23(5), 523-545. https://doi.org/10.1080/13597566.2013.775945

Suárez, J. L., Mcarthur, B., & Soto-Corominas, A. (2015). Cultural Networks and The Future of Cultural Analytics. Proceedings of Culture and Computing. Doi: 10.1109/Culture.and.Computing.2015.37

Suárez, J. L., Sancho-Caparrini, F., & Vásquez, S. (2011). The Potosí Principle: Religious prosociality fosters self-organization of larger communities Under extreme natural and economic conditions. Literary and Linguistic Computing, 27(1), 25-38. https://doi.org/10.1093/llc/fqr043

Takezawa, M., & Price, M. E. (2010). Revisiting “The Evolution of Reciprocity in Sizable Groups”: Continuous Reciprocity in the Repeated N-Person Prisoner’s Dilemma. Journal of Theoretical Biology, 264(2), 188-196. https://doi.org/10.1016/j.jtbi.2010.01.028

Thibaut, J. W., & Kelley, H. H. (1960). The Social Psychology of Groups. Social Forces, 38(4), 367-368.

Tomasello, M. (2014). The Ultra-Social Animal. European Journal of Social Psychology 44(3), 187-194. doi: 10.1002/ejsp.2015

Tooby, J., Cosmides, L., & Price, M. E. (2006). Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior. MDE Manage Decis Econ., 27(2-3), 103-129. doi: https://doi.org/10.1002/mde.1287

Traulsen, A., & Nowak, M. A. (2006). Evolution of Cooperation by Multilevel Selection. PNAS, 103(29), 10952-10955. https://doi.org/10.1073/pnas.0602530103

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. Fourth International AAAI Conference on Weblogs and Social Media. AAAI Publications.

Von Beyme, K. (1985). Karl Marx and Party Theory. Government and Opposition, 20(1), 70-87. http://www.jstor.org/stable/44483550

Yasseri, T., & Cihon, P. (2016). A Biased Review of Biases in Twitter Studies on Political. Frontiers in Physics, 4(34). https://doi.org/10.3389/fphy.2016.00034
Cómo citar
Monroig Vives, R. . (2020). Cohesión de redes nacionales y culturales durante periodos de estrés. Universitas Humanística, 90. https://doi.org/10.11144/Javeriana.uh90.cncn
Sección
Dossier: Humanidades digitales II