Published Dec 7, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Luis Gabriel Márquez-Díaz, MSc

Juan D. Aldana, BSc

Mauricio F. Prieto, BSc

##plugins.themes.bootstrap3.article.details##

Abstract

This paper examines the acceptability of the implementation of a High Occupancy Vehicle (HOV) lane in the north of Bogota (Colombia), a strategy that is compatible with the policies of the mobility master plan of the city. Although the idea of using HOV lanes dates back to the 70's, it is still a valid alternative which is amply documented that produces positive impacts on travel times, accident rates, greenhouse emissions, among others. The study is based on discrete choice survey experiments which allowed calibrating a multinomial logit model. The calibrated model indicated that the acceptability of the HOV lane is very sensitive to travel times experienced by current car users. The model also identified the segment of the population with the highest acceptability for the proposal, which would consist of women over 31 years old, who travel for purposes related to work

Keywords

high-occupancy vehicles, HOV lanes, car sharing, Bogota, urban congestionvehículos de alta ocupación, carriles VAO, auto compartido, Bogotá, congestión urbana

References
[1] G. Santos, H. Behrendt, and A. Teytelboym, “Part II: Policy instruments for sustainable road transport,” Research in Transportation Economics, vol. 28, no. 1, pp. 46-91, 2010.
[2] C. Wellander and K. Leotta, “Are high-occupancy vehicle lanes effective?: Overview of high-occupancy vehicle facilities across North America,” Transportation Research Record, no. 1711, pp. 23-30, 2000.
[3] C. P. Chu, J. F. Tsai, and S. R. Hu, “Optimal starting location of an HOV lane for a linear monocentric urban area,” Transportation Research Part A: Policy and Practice, vol. 46, no. 3, pp. 457-466, 2012.
[4] K. F. Turnbull, An assessment of high occupancy vehicle (HOV) facilities in North America: executive report”.Washington D. C.: U.S. Department of Transportation, 1992.
[5] J. Bauer, C. McKellar, J. Bunker, and J. Wikman, “High occupancy vehicle lanes – an overall evaluation including Brisbane case studies,” presented at Proceedings 2005 AITPM National Conference, pp. 229-244.
[6] W. J. Berger, “The Austrian HOV-lane: experiences in implementation and operation,” Journal of Civil Engineering and Management, vol. 8, no. 4, pp. 255-262, 2002.
[7] R. Wang, “Shaping carpool policies under rapid motorization: the case of Chinese cities,” Transport Policy, vol. 18, no. 4, pp. 631-635, August 2011.
[8] I. Stamos, G. Kitis, S. Basbas, and I. Tzevelekis, “Evaluation of a high occupancy vehicle lane in central business district Thessaloniki,” Procedia - Social and Behavioral Sciences, vol. 48, pp. 1088-1096, 2012.
[9] T. Geerken, “Madrid high occupancy vehicle (HOV) lanes,” in SCP Cases in the Field of Food, Mobility and Housing, S. Lahlou and S. Emmert, Ed. Paris: Workshop of the Sustainable Consumption Research Exchange, 2007, pp. 327-334.
[10] J. Obenberger and B. Rupert, “Operating high-occupancy vehicle lanes: issues for consideration,” Transportation Research Record, no. 1711, pp. 6-12, 2000.
[11] J. Kwon and P. Varaiya, “Effectiveness of California’s high occupancy vehicle (HOV) system,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 1, pp. 98-115, February 2008.
[12] T. Fontes, P. Fernandes, H. Rodrigues, J. M. Bandeira, S. R. Pereira, A. J. Khattak, and M. C. Coelho, “Are HOV/eco-lanes a sustainable option to reducing emissions in a medium-sized European city?,” Transportation Research Part A: Policy and Practice, vol. 63, pp. 93-106, May 2014.
[13] K. Boriboonsomsin and M. Barth, “Impacts of freeway high-occupancy vehicle lane configuration on vehicle emissions,” Transportation Research Part D: Transport and Environment, vol. 13, no. 2, pp. 112-125, March 2008.
[14] H. Konishi and S. Mun, “Carpooling and congestion pricing: HOV and HOT lanes,” Regional Science and Urban Economics, vol. 40, no. 4, pp. 173-186, July 2010.
[15] K.S. Nesamani, L. Chu, and W. Recker, “Policy Implications of Incorporating Hybrid Vehicles into High-Occupancy Vehicle Lanes,” Journal of Transportation Systems Engineering and Information Technology, vol. 10, no. 2, pp. 30-41, April 2010.
[16] Secretaría Distrital de Movilidad, “Decreto 319 de 2006,” Marzo 2014 [Online]. Avalaible at: http://www.movilidadbogota.gov.co/hiwebx_archivos/ideofolio/Decreto-319de2006_11_4_ 7.pdf
[17] Alcaldía Mayor de Bogotá, “Decreto 575 de 2013,” Marzo 2014 [Online]. Avalaible at: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=55963
[18] R. T. Bascuñán, “Preferencias declaradas en el análisis de la aceptabilidad de la tarificación vial para la ciudad de Santiago,” Tesis (Magíster en Ciencias de la Ingeniería) Pontificia Universidad Católica de Chile, 2009.
[19] Departamento Nacional de Estadística, “Estimación y proyección de población nacional, departamental y municipal por sexo, grupos quinquenales de edad y edades simples de 0 a 26 años 1985-2020,” Marzo 2014 [Online]. Avalaible at https://www.dane.gov.co/index. php/poblacion-y - demografia/proyecciones-de-poblacion
[20] Secretaría Distrital de Movilidad, “Formulación del plan maestro de movilidad para Bogotá D.C., que incluye ordenamiento de estacionamientos, Transporte Público-V8,” Marzo 2014 [Online]. Avalaible at http://www.movilidadbogota.gov.co/hiwebx_archivos/ideofolio/08-TransportePublico_15_9_24.pdf
[21] M. Bliemer and J. M. Rose. “Efficiency and sample size requirements for stated choice experiments,” presented at 88th Annual TRB Meeting, Transportation Research Board, Washington, DC, January 2009, p. 11.
[22] G. Koçur, T. Adler, and W. Hyman, E. Audet. Guide to Forecasting Travel Demand With Direct Utility Measurement. Washington: USA Department of Transportation (UMTA), 1982, pp. 197-214.
[23] K. Train, Discrete Choice Methods with Simulation. Cambridge: Cambridge University Press, 2003.
[24] J. D. Ortúzar and L. G. Willumsen, Modelling Transport. 4th edition. Chichester: John Wiley & Sons, 2011.
[25] M. Ben-Akiva and S. R. Lerman, Discrete Choice Analysis: Theory and Application to Travel Demand. Cambridge: The MIT Press, 1985.
[26] G. Correia and J. M. Viegas, “Carpooling and carpool clubs: Clarifying concepts and assessing value enhancement possibilities through a Stated Preference web survey in Lisbon, Portugal,” Transportation Research Part A: Policy and Practice, vol. 45, no. 2, pp. 81-90, February 2011.
[27] D. Brownstone and T. F. Golob, “The effectiveness of ridesharing incentives: discretechoice models of commuting in Southern California,” Regional Science and Urban Economics, vol. 22, no. 1, pp. 5-24, 1992.
[28] L. Márquez, “Disposición a pagar por reducir el tiempo de viaje en Tunja, Colombia: comparación entre estudiantes y trabajadores con un modelo Logit mixto,” Lecturas de Economía, no. 78, pp. 46-72, enero-junio 2013.
[29] F. Ciari, “Sharing as a key to rethink urban mobility: Investigating and modeling innovative transport systems,” Thesis (Doctor of Sciences) Environmental Engineer, University of Florence (Italy), 1974.
[30] X. Zhang, W. Wang, S. Chen, and Z. Li, “Research on the link travel time model for high occupancy vehicle lanes of freeways,” Procedia - Social and Behavioral Sciences, vol. 96, 6, pp. 1728-1737, November 2013.
[31] K. Jang, K. Chung, and H. Yeo, “A dynamic pricing strategy for high occupancy toll lanes,” Transportation Research Part A: Policy and Practice, vol. 67, pp. 69-80, September 2014.
[32] R.C. Jou, M. C. Weng, and C. C. Chen, “The evaluation of high occupancy vehicle lanes on Sun Yat-Sen freeway in Taiwan,” Journal of Advanced Transportation, vol. 39, no. 2, pp. 169-192, 2005.
[33] L. Márquez, V. Cantillo, and J. Arellana, “How are comfort and safety perceived by inland waterway transport passengers?,” Transport Policy, vol. 36, pp. 46-52, November 2014.
How to Cite
Márquez-Díaz, L. G., Aldana, J. D., & Prieto, M. F. (2015). Acceptability of implementing high occupancy vehicle lanes on the north highway in Bogota. Ingenieria Y Universidad, 20(1), 139–154. https://doi.org/10.11144/Javeriana.iyu20-1.aiho
Section
Transportation engineering