Abstract
This study estimates the parameters for the proper operation of each one of the process stages (compression, cooling, and separation) in an existing gas processing plant, which processes 1.5 million standard cubic feet per day (MMSCFD). The study also proposes changes in some existing operational equipment to maximize the production of naphtha, which translates into an improved efficiency in each analyzed stage and an improved production rate of fuel gas, liquefied petroleum gas (LPG) and naphtha, which are current products of the plant. First, the gas plant was simulated using the Aspen HYSYS® V7.3 software with the current operational plant conditions and the measured properties of the fluids (gas chromatography for input gas, fuel gas, and LPG). Subsequently, unidimensional searches were performed via sensitivity analyses of the key stages of the process to obtain suitable parameters for improving naphtha production. This resulted in a maximum naphtha recovery rate of 99.13% (which is an improvement over the current recovery rate of 82.79%) and an increase in naphtha quality of 20.85%. The study allowed to have a sensibility analysis for nafta recovery, which provides a tool for decision-making and establishes a basis for analyzing other plants
[2] K. Keyvanloo, J. Towfighi, S. M. Sadrameli, and A. Mohamadalizadeh, “Investigating the effect of key factors, their interactions and optimization of naphtha steam cracking by statistical design of experiments.” J. Anal. Appl. Pyrol., vol. 87, pp. 224-230, 2010.
[3] W. Hou, H. Su, Y. Hu, and J. Chu, “Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen Plus platform.” Chinese J. Chem. Eng., vol. 14, pp. 584-591, 2006.
[4] M. R. Rahimpour, D. Iranshahi, E. Pourazadi, and A. M. Bahampour, “Boosting the gasoline octane number in thermally coupled naphtha reforming heat exchanger reactor using de optimization technique.” Fuel, vol. 97, pp. 109-118, 2012.
[5] F. S. Manning, and R. E. Thomson, Oilfield Processing, vol. 1 Natural Gas. Tulsa, Oklahoma: Pennwell Publishing Company, 1991.
[6] M. Mehrpooya, A Vatani, and S. M. Ali Mousavian, “Introducing a novel integrated NGL recovery process configuration (with a self-refrigeration system [open–closed cycle]) with minimum energy requirement.” Chem. Eng. Process. Process Intensif., vol. 49, pp. 376-388, 2010.
[7] B. Ghorbani, G. R. Salehi, H. Ghaemmaleki, M. Amidpour, and M. H. Hamedi, “Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis.” J. Natural Gas Sci. Eng., vol. 7, pp. 35-43, 2012.
[8] A. Vatani, M. Mehrpooya, and B. Tirandazi, “A novel process configuration for coproduction of NGL and LNG with low energy requirement.” Chem. Eng. Process. Process Intensif., vol. 63, pp. 16-24, 2013.
[9] M. Getu, S. Mahadzir, N. V. D. Long, and M. Lee, “Techno-economic analysis of potential natural gas liquid (NGL) recovery processes under variations of feed compositions.” Chem. Eng. Res. Des., vol. 91, pp. 1272-1283, 2013.
[10] S. A. Al-Sobhi and A. Elkamel, “Simulation and optimization of natural gas processing and production network consisting of LNG, GTL, and methanol facilities.” J. Natural Gas Sci. Eng., vol 23, pp. 500-508, 2015.
[11] M. R. Rahimpour, A. N. Rouzbahani, M. Bahmani, J. Shariat, and T. Tohidian, “Simulation, optimization, and sensitivity analysis of a natural gas dehydration unit.” J. Natural Gas Sci. Eng., vol 21, pp. 159-169, 2014.
[12] V. R. Ferro, J. Paloram, J. De Riva, D. Moreno, and I. Diaz, “Aspen Plus supported conceptual design of the aromatic–aliphatic separation from low aromatic content naphtha using 4-methyl-N-butylpyridinium tetrafluoroborate ionic liquid.” Fuel Process. Technol., vol 146, pp. 29-38, 2016.
[13] S. Mokhatab and W. A. Poe. “Chapter 10 - natural gas liquids recovery,” in Handbook of Natural Gas Transmission and Processing, S. Mokhatab and W. A. Poe., Eds. 2nd ed. Boston: Gulf Professional Publishing, 2012, pp. 353-391.
This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights.
Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.