Published Feb 1, 2019



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Alok Dhaundiyal https://orcid.org/0000-0002-3390-0860

Abdulrahman Th Mohammad https://orcid.org/0000-0002-0487-4464

Toth Laszlo https://orcid.org/0000-0001-5604-6794

##plugins.themes.bootstrap3.article.details##

Abstract

Thermal behaviour of pine needles (Pinus Roxburghii) is examined through a thermogravimetry technique. The dried samples of pine needles undergo the non isothermal decomposition at temperature range of 308 - 1173 K. The heating rates used for experimental purposes are: 5 °C min-1, 10 °C min-1 and 15 °C min-1. Kinetic parameters of thermal decomposition reactions of pine needles are obtained through the model-free schemes. The estimated values of activation energy and frequency factor derived from Kissinger method are 132.77 kJ mol-1 and 13.15 x107 min-1, respectively. Furthermore, the averaged values of the same kinetics parameters retrieved from the isoconversional methods are 82.38 kJ mol-1 and 74.833 kJ mol-1, 25.42 x1013 min-1 and 13.449 x1010 min-1, respectively. Instead of the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira Sunrose (KAS) schemes, the kinetic parameters derived from the Kissinger method are relatively promising for the thermal decomposition process, since the kinetic parameters are highly affected by intermediate stages and overlapping of the concurrent reaction occurred during pyrolysis.

Keywords

thermogravimetric analysis (TGA), model free methods, kinetic parameters, biomass, pyrolysis

References
[1] Dhaundiyal A, Tewari PC. Performance Evaluation of Throatless Gasifier Using Pine Needles as a Feedstock for Power Generation, Acta Technologica Agriculturae, 19(1): 10-18, 2016.
doi: 10.1515/ata-2016-0003

[2] Dhaundiyal A, Gupta VK. The Analysis of Pine Needles as a Substrate for Gasification, Hydro Nepal, Journal of Water, Energy and Environment, 15: 73-81, 2014.
doi: 10.3126/hn.v15i0.11299

[3] Goyal HB, Seal D, Saxena RC. Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12(2): 504-517, 2008.
doi: 10.1016/j.rser.2006.07.014

[4] Colantoni S, Della Gatta S, De Prosperis R, Russo A, Fantozzi F, Desideri U. Gas Turbines Fired With Biomass Pyrolysis Syngas: Analysis of the Overheating of Hot Gas Path Components, Journal of Engineering for Gas Turbines and Power, 132(6): 061401, 2010.
doi: 10.1115/1.4000134

[5] Shakya BD. Pyrolysis of waste plastics to generate useful fuel containing hydrogen using a solar thermochemical process, Master Thesis of Engineering, Sidney Digital Theses (Open Access) 2007.
http://hdl.handle.net/2123/1709

[6] Dhaundiyal A, Chandra Tewari P. Comparative Analysis of Pine Needles and Coal for Electricity Generation using Carbon Taxation and Emission Reductions, Acta Technologica Agriculturae, 18(2): 2015.
doi: 10.1515/ata-2015-0007

[7] Lin KS, Wang HP, Lin C-J, Juch C-I. A process development for gasification of rice husk, Fuel Processing Technology, 55(3): 185-192, 1998.
doi: 10.1016/S0378-3820(98)00049-6

[8] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 520(1-2): 1-19, 2011.
doi: 10.1016/j.tca.2011.03.034

[9] Ozawa T. A New Method of Analyzing Thermogravimetric Data, Bulletin of the Chemical Society of Japan, 38(11): 1881-1886, 1965.
doi: 10.1246/bcsj.38.1881

[10] Coats AW, Redfern JP. Kinetic Parameters from Thermogravimetric Data, Nature, 201(4914): 68-69, 1964.
doi: 10.1038/201068a0

[11] Brown ME, Maciejewski M, Vyazovkin S, et al. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics projectdata, methods and results, Thermochimica Acta, 355(1-2): 125-143, 2000.
doi: 10.1016/S0040-6031(00)00443-3

[12] Dhaundiyal A, Singh SB, Hanon MM, Rawat R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus, Environmental and Climate Technologies, 22(1): 5-21, 2018.
doi: 10.1515/rtuect-2018-0001

[13] Golikeri S V., Luss D. Analysis of activation energy of grouped parallel reactions, AIChE Journal, 18(2): 277-282, 1972.
doi: 10.1002/aic.690180205

[14] Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions, Journal of Thermal Analysis and Calorimetry, 89(2): 479-490, 2007.
doi: 10.1007/s10973-006-8486-1

[15] Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes Cham: Springer International Publishing; 2015.

[16] Kujirai T, Akahira T. Effect of Temperature on the Deterioration of Fibrous Insulating materials; 1925.

[17] Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, Journal of Polymer Science Part C: Polymer Symposia, 6(1): 183-195, 1964.
doi: 10.1002/polc.5070060121

[18] Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part B: Polymer Letters, 4(5): 323-328, 1966.
doi: 10.1002/pol.1966.110040504

[19] Miura K, Maki T. A Simple Method for Estimating f (E) and k0(E) in the Distributed Activation Energy Model, Energy & Fuels, 12(5): 864-869, 1998.
doi: 10.1021/ef970212q

[20] Constable FH. The Mechanism of Catalytic Decomposition, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 108(746): 355-378, 1925.
doi: 10.1098/rspa.1925.0081

[21] Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proceedings of the Physical Society, 55(3): 222-246, 1943.
doi: 10.1088/0959-5309/55/3/308

[22] Pitt GJ. The kinetics of the evolution of volatile products from coal, Fuel, (41): 267-274, 1962.

[23] Hanbaba P. Reaktionkinetische Untersuchungen sur Kohlenwasserstoffenbindung aus Steinkohlen bie niedregen Aufheizgeschwindigkeiten, 1967.

[24] Anthony DB, Howard JB. Coal devolatilization and hydrogastification, AIChE Journal, 22(4): 625-656, 1976.
doi: 10.1002/aic.690220403

[25] Dhaundiyal A, Singh SB. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution, Acta Technologica Agriculturae, 20(3): 78-84, 2017.
doi: 10.1515/ata-2017-0016

[26] Dhaundiyal A, Singh SB, Hanon MM. Study of Distributed Activation Energy Model Using Bivariate Distribution Function, f(E1, E2), Thermal Science and Engineering Progress, (5): 388-404, 2018.
doi: 10.1016/j.tsep.2018.01.009

[27] Lewellen PC, Peters WA, Howard JB. Cellulose pyrolysis kinetics and char formation mechanism, Symposium (International) on Combustion, 16(1): 1471-1480, 1977.
doi: 10.1016/S0082-0784(77)80429-3

[28] Kissinger HE. Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29(11): 1702-1706, 1957.
doi: 10.1021/ac60131a045

[29] Burnham AK. Introduction to Chemical Kinetics, In: Global Chemical Kinetics of Fossil Fuels. Cham: Springer International Publishing; 2017: 25-74

[30] Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis, Journal of Research of the National Bureau of Standards, 57(4): 217, 1956.
doi: 10.6028/jres.057.026

[31] Chen D, Gao X, Dollimore D. A generalized form of the Kissinger equation, Thermochimica Acta, 215: 109-117, 1993.
doi: 10.1016/0040-6031(93)80085-O

[32] Braun RL, Burnham AK. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models, Energy & Fuels, 1(2): 153-161, 1987.
doi: 10.1021/ef00002a003

[33] Capart R, Khezami L, Burnham AK. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose, Thermochimica Acta, 417(1): 79-89, 2004.
doi: 10.1016/j.tca.2004.01.029

[34] Elder JP. Multiple reaction scheme modelling, Journal of Thermal Analysis, 34(5-6): 1467-1484, 1988.
doi: 10.1007/BF01914371

[35] Dowdy DR. Meaningful activation energies for complex systems, Journal of Thermal Analysis, 32(1): 137-147, 1987.
doi: 10.1007/BF01914556

[36] Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers, Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 70A(6): 487, 1966.
doi: 10.6028/jres.070A.043

[37] Brown ME, Dollimore D, Galwey A. Reactions in the Solid State 1st ed. Elsevier Science; 1980.

[38] Piloyan GO, Ryabchikov ID, Novikova OS. Determination of Activation Energies of Chemical Reactions by Differential Thermal Analysis, Nature, 212(5067): 1229-1229, 1966.
doi: 10.1038/2121229a0

[39] Criado JM, Gonzalez M, Ortega A, Real C. Some considerations regarding the determination of the activation energy of solidstate reactions from a series of isothermal data, Journal of Thermal Analysis, 29(2): 243-250, 1984.
doi: 10.1007/BF02720058

[40] Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR. Current technologies for analysis of biomass thermochemical processing: A review, Analytica Chimica Acta, 651(2): 117-138, 2009.
doi: 10.1016/j.aca.2009.08.016

[41] White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies, Journal of Analytical and Applied Pyrolysis, 91(1): 1-33, 2011.
doi: 10.1016/j.jaap.2011.01.004

[42] Tang TB, Chaudhri MM. Analysis of dynamic kinetic data from solid-state reactions, Journal of Thermal Analysis, 18(2): 247-261, 1980.
doi: 10.1007/BF02055808

[43] Flynn JH. A general differential technique for the determination of parameters for d(α)/dt=f(α)A exp (−E/RT), Journal of Thermal Analysis, 37(2): 293-305, 1991.
doi: 10.1007/BF02055932

[44] Doyle CD. Estimating isothermal life from thermogravimetric data, Journal of Applied Polymer Science, 6(24): 639-642, 1962.
doi: 10.1002/app.1962.070062406

[45] Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods, Chemometrics and Intelligent Laboratory Systems, 96(2): 219-226, 2009.
doi: 10.1016/j.chemolab.2009.02.002

[46] Strezov V, Moghtaderi B, Lucas JA. Thermal study of decomposition of selected biomass samples, Journal of Thermal Analysis and Calorimetry, 72(3): 1041-1048, 2003.
doi: 10.1023/A:1025003306775

[47] Lal PS, Sharma A, Bist V. Pine Needle - An Evaluation of Pulp and Paper, Journal of Forest Products & industries, 2(3): 42-47, 2013.

[48] Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management, 29(8): 2353-2360, 2009.
doi: 10.1016/j.asman.2009.03.020

[49] Dhaundiyal A, Hanon MM. Calculation of kinetic parameters of the thermal decomposition of residual waste of coniferous species: Cedrus Deodara, Acta Technologica Agriculturae, 21(2): 76-81, 2018.
doi: 10.2478/ata-2018-0014

[50] Matsumoto T, Fujiwara T, Kondo J. Nonsteady thermal decomposition of plastics, Symposium (International) on Combustion, 12(1): 515-524, 1969.
doi: 10.1016/S0082-0784(69)80433-9

[51] Loy ACM, Gan DKW, Yusup S, et al. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst, Bioresource Technology, 261 213-222, 2018.
doi: 10.1016/j.biortech.2018.04.020

[52] Cai J, Xu D, Dong Z. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk, Renewable and Sustainable Energy Reviews, 82 2705-2715, 2018.
doi: 10.1016/j.rser.2017.09.113

[53] Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochimica Acta, 340-341 53-68, 1999.
doi: 10.1016/S0040-6031(99)00253-1

[54] Kumar A, Wang L, Dzenis YA, Jones DD, Hanna MA. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock, Biomass and Bioenergy, 32(5): 460-467, 2008.
doi: 10.1016/j.biombioe.2007.11.004

[55] Dhaundiyal A, Singh SB. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution, Proceedings of the Latvian Academy of Sciences. Section B. Natural Exact and Applied Sciences, 70(2): 2016.
doi: 10.1515/prolas-2016-0011

[56] Maia AAD, de Morais LC. Kinetic parameters of red pepper waste as biomass to solid biofuel, Bioresource Technology, 204 157-163, 2016.
doi: 10.1016/j.biortech.2015.12.055
How to Cite
Dhaundiyal, A., Mohammad, A. T., & Laszlo, T. (2019). Thermo-kinetics of Forest Waste Using Model-Free Methods. Universitas Scientiarum, 24(1), 1–31. https://doi.org/10.11144/Javeriana.SC24-1.tofw
Section
Multidisciplinary sciences