Abstract
Thermal behaviour of pine needles (Pinus Roxburghii) is examined through a thermogravimetry technique. The dried samples of pine needles undergo the non isothermal decomposition at temperature range of 308 - 1173 K. The heating rates used for experimental purposes are: 5 °C min-1, 10 °C min-1 and 15 °C min-1. Kinetic parameters of thermal decomposition reactions of pine needles are obtained through the model-free schemes. The estimated values of activation energy and frequency factor derived from Kissinger method are 132.77 kJ mol-1 and 13.15 x107 min-1, respectively. Furthermore, the averaged values of the same kinetics parameters retrieved from the isoconversional methods are 82.38 kJ mol-1 and 74.833 kJ mol-1, 25.42 x1013 min-1 and 13.449 x1010 min-1, respectively. Instead of the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira Sunrose (KAS) schemes, the kinetic parameters derived from the Kissinger method are relatively promising for the thermal decomposition process, since the kinetic parameters are highly affected by intermediate stages and overlapping of the concurrent reaction occurred during pyrolysis.
Dhaundiyal A, Tewari PC. Performance Evaluation of Throatless Gasifier Using Pine needles as a Feedstock for Power Generation, Acta Technologica Agriculturae, 19(1): 10-18, 2016.
doi: 10.1515/ata-2016-0003
Dhaundiyal A, Gupta VK. The Analysis of Pine Needles as a Substrate for Gasification, Journal of Water, Energy and Environment, 15(1): 73-81, 2014.
doi: 10.3126/hn.v15i0.11299
Goyal HB, Seal D, Saxena RC. Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12(2): 504-517, 2008.
doi: 10.1016/j.rser.2006.07.014
Fantozzi F, D’Alessandro B, Bidini G. IPRP - Integrated pyrolysis regenerated plant – gastuirbine and externally heated rotary-kiln pyrolysis as a biomass waste energy conversion system. Influence of thermodynamic parameters, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(5): 519-527, 2003.
doi: 10.1243/095765003322407566
Colantoni S, Della Gatta S, De Prosperis R, Russo A, Fantozzi F, Desideri U. Gas turbines fired with biomass pyrolysis syngas: analysis of the overheating of hot gas path components, Journal of Engineering Gas Turbines Power, 132(6): 389-398, 2010.
doi: 10.1115/1.4000134
Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass, Energy Conversion and Management, 51(5): 969-982, 2010.
doi: 10.1016/j.enconman.2009.11.038
Shakya B. Pyrolysis of waste plastics to generate useful fuel containing hydrogen using a solar thermochemical process, Master's Thesis, University of Sydney, Sydney, Australia. 2007.
Retrieved from https://ses.library.usyd.edu.au/handle/2123/1709
Senneca O, Chirone R, Masi S, Salatino P. A thermogravimetric study of nonfossil solid fuels 1. Inert pyrolysis, Energy & Fuel, 16(3): 653-660, 2002.
doi: 10.1021/ef0102059
Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis, Polymer Degradation and Stability, 93(1): 90-98, 2008.
doi: 10.1016/j.polymdegradstab.2007.10.012
Teng H, Hsieh CT. Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal, Ind. Engg. Chem. Res, 37(9): 3618-3624, 1998.
doi: 10.1021/ie970796j
Simon P. Isoconversional methods: fundamental, meaning and application, Journal of Thermal Analysis and Calorimetry, 76(1): 123-132, 2004.
doi: 10.1023/B:JTAN.0000027811.80036.6c
Sbirrazzuoli N, Vincent L, Mija A, Guio N. Integral, differential and advanced isoconversional methods: Complex mechanisms and isothermal predicted conversion–time curves, Chemometrics and Intelligent Laboratory Systems, 96(2): 219-226, 2009.
doi: 10.1016/j.chemolab.2009.02.002
Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics, The Journal of Physical Chemistry B, 109(20): 10073-10080, 2005.
doi: 10.1021/jp050589u
Khawam A. Application of solid state-kinetics to desolvation reactions, Doctoral Dissertation, University of Iowa, Iowa City, USA. 2007.
Retrieved from https://ir.uiowa.edu/etd/170
Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data advantages and limitations, Thermochimica Acta, 391(1-2): 119-127, 2002.
doi: 10.1016/S0040-6031(02)00169-7
Zhou D, Schmitt E, Zhang G, Law D, Vyazovkin S, Wight C, Grant D. Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches, Journal of Pharmaceutical Sciences, 92(9): 1779-1792, 2003.
doi: 10.1002/jps.10425
Janković BZ, Janković MM. Pyrolysis of pine and beech wood samples under isothermal experimental conditions. The determination of kinetic triplets, Cellulose Chemistry and Technology, 47(9-10): 681-697, 2013.
Retrieved from http://www.cellulosechemtechnol.ro/pdf/CCT9-10(2013)/p.681-697.pdf
Brown M, Dollimore D, Galwey AK. Reactions in the Solid State, Comprehensive Chemical Kinetics, Volume 22, Elsevier, Amsterdam. 1980.
Piloyan GO, Ryabchikov ID, Novikova OS. Determination of Activation Energies of Chemical Reactions by Differential Thermal Analysis, Nature, 212: 1229, 1966.
doi: 10.1038/2121229a0
Criado JM, Gonzalez M, Ortega A, Real C. Some considerations regarding the determination of the activation energy of solid-state reactions from a series of isothermal data, J. Therm. Anal, 29(2): 243-250, 1984.
doi: 10.1007/BF02720058
Kyung BM, Mukarakate C, Robichaud DJ, Nimlos MR. Current technologies for analysis of biomass thermochemical processing: A review, Analytica Chimica Acta, 651: 117-138, 2009.
doi: 10.1016/j.aca.2009.08.016
Fang MX, Shen DK, Li YX, Yu CJ, Luo ZY, Cen KF. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis, Journal of Analytical and Applied Pyrolysis, 77(1): 22-27, 2006.
doi: 10.1016/j.jaap.2005.12.010
Shen DK, Gu S, Luo KH, Bridgewater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment, Fuel, 88(6): 1024-1030, 2009.
doi: 10.1016/j.fuel.2008.10.034
White JE, Catallo J, Legendre BL. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies, Journal of analytical and applied pyrolysis, 91(1): 1-33, 2011.
doi: 10.1016/j.jaap.2011.01.004
Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry Application to phenolic plastic, J. Polym. Sci. C, 6: 183-195, 1964.
doi: 10.1002/polc.5070060121
Ozawa T. A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, 38(11): 1881-1886, 1965.
doi: 10.1246/bcsj.38.1881
Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers, J Res Nat Bur Standards Part A, 70: 487-523, 1966.
doi: 10.6028/jres.070A.043
Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis, Journal of Research of the National Bureau of Standards, 57(4): 217-221, 1956.
doi: 10.6028/jres.057.026
Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part C: Polymer Letters, 4(5): 323-328, 1966.
doi: 10.1002/pol.1966.110040504
Doyle CD. Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci., 6(24): 639-642, 1962.
doi: 10.1002/app.1962.070062406
Strezov V, Moghtaderi B, Lucas J. Thermal study of decomposition of selected biomass samples, Journal of Thermal Analysis and Calorimetry, 72(3): 1041-1048, 2003.
doi: 10.1023/A:1025003306775
Lal PS, Sharma A, Bisht V. Pine Needle - An Evaluation of Pulp and Paper Making Potential, Journal of Forest Products and Industries, 2(3): 42-47, 2013.
Retrieved from https://pdfs.semanticscholar.org/e4a8/ac6d935bec5e8e8cfffce0b9b4c96985dfd9.pdf
Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management, 29(8): 2353-2360, 2009.
doi: 10.1016/j.wasman.2009.03.020
Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochimica acta, 340-341: 53-68, 1999.
doi: 10.1016/S0040-6031(99)00253-1
Kumar A, Wang L, Dzenis Y, Jones D, Hanna M. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock, Biomass and Bioenergy, 32(5): 460-467, 2008.
doi: 10.1016/j.biombioe.2007.11.004
Dhaundiyal A, Singh SB. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution, Proceedings of the Latvian Academy of Sciences. Section B, 70: 64–70, 2016.
doi: 10.1515/prolas-2016-0011
Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.