Published Mar 16, 2011


Google Scholar
Search GoogleScholar

Franky Bedoya-Lora, BSc

Jorge Calderón-Gutiérrez, PhD

Ángela Bermúdez-Castañeda, BSc

Juan Castaño-Gonzalez, PhD

Félix Echeverría-Echeverría, PhD

Juan Maya-Montoya, BSc



Accelerated tests together with electrochemical impedance spectroscopy (EIS) analysis, are powerful tools to follow up the degradation process of organic coatings under controlled conditions in relatively short periods of time. This work presents a review of the most common accelerated methods, coupled with EIS measurements and applied to organic coatings on galvanized steel under simulated atmospheric environments.


Impedance spectroscopy, galvanized steel, protective converingsEspectroscopia de impedancia, acero galvanizado, cubiertas protectoras

ALTMAYER, F. Choosing an accelerated corrosion test. Metal Finishing. 2001, núm. 99, pp. 579-585.
AMIRUDIN, A. y THIERRY, D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progress in Organic Coatings. 1995, vol. 26, núm. 1, pp. 1-28.
ARMELIN, E. Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Sciences. 2008, vol. 50, pp. 721-728.
BARSOUKOV, E. y MACDONALD, J. R. Impedance spectroscopy theory, experiment, and applications. New York: John Wiley and Sons. 2005.
BIERWAGEN, G.; TALLMAN, D.; LI, J.; HE, L. y JEFFCOATE, C. EIS studies of coated metals in accelerated exposure. Progress in Organic Coatings. 2003, vol. 46, núm. 2, pp. 149-158.
BIERWAGEN, G. P.; HEA, L.; LIA, J.; ELLINGSON, L. y TALLMAN, D. E. Studies of a new accelerated evaluation method for coating corrosion resistance— thermal cycling testing. Progress in Organic Coatings. 2000, vol. 39, pp. 67-78.
BIERWAGEN, G. P. y TALLMAN, D. E. Choice and measurement of crucial aircraft coatings system properties. Progress in Organic Coatings. 2001, vol. 41, pp. 201-216.
BOS, T. Cyclic Laboratory Tests for Evaluating Coatings: A Brief Review of Literature. Journal of Protective Coatings and Linings. 2008, núm. 25, pp. 73-79.
BOTERO, C. Evaluación de la corrosividad de atmósferas colombianas y su impacto sobre el deterioro de algunos materiales empleados en el sector eléctrico. s. d., 2008.
BROSSIA, S. Environmental performance of materials section: laboratory assessment of corrosion. s. l.: Southwest Research Institute, 2005.
BRUNNER, S.; RICHNER, P.; MULLER, U. y GUSEVA, O. Accelerated weathering device for service life prediction for organic coatings. Polymer Testing. 2005, núm. 24, pp. 25-31.
CALDERÓN, J. A.; BARCIA, O. E. y MATTOS, O. R. Reaction model for kinetic of cobalt dissolution in carbonate/bicarbonate media. Corrosion Science. 2008, núm. 50, p. 2101.
CASTAÑO, J. G. Efecto del NO2 en la corrosión atmosférica del zinc. Tesis doctoral. Madrid: Universidad Complutense, 2001.
CORDEIRO, G. G. O.; BARCIA, O. E. y MATTOS, O. R. Copper Electrodissolution Mechanism in a 1 M Sulphate Medium. Electrochimica Acta. 1993, vol. 38, pp. 319-324.
CREMER, N. D. Prohesion compared to salt spray and outdoors: cyclic methods of accelerated corrosión testing, in federation of societies for coatings technology. Paint Show, 1989.
DAVIES, P. y EVRARD, G. Accelerated ageing of polyurethanes for marine applications. Polymer Degradation and Stability. 2007, núm. 92, pp. 1455-1464.
DEFLORIAN, F.; ROSSI, S. y FEDEL, M. Organic coatings degradation: comparison between natural and artificial weathering. Corrosion Science. 2008, núm. 50, pp. 2360-2366.
DEFLORIAN, F.; ROSSI, S.; FEDRIZZI, L. y ZANELLA, C. Comparison of organic coating accelerated tests and natural weathering considering meteorological data. Progress in Organic Coatings. 2007, vol. 59, pp. 244-250.
DEHRI, I. y ERBIL, M. The efect of relative humidity on the atmospheric corrosion of defective organic coating materials, pp. an EIS study with a new approach. Corrosion Science. 2000, núm. 42, pp. 969-978.
DEL AMO, B.; VÉLEVA, L.; DI SARLI, A. R. y ELSNER, C. I. Performance of coated steel systems exposed to different media: Part I. Painted galvanized steel. Progress in Organic Coatings. 2004, vol. 50, núm. 3, pp. 179-192.
DUARTE, R. G.; CASTELA, A. S. y FERREIRA, M. G. S. Influence of ageing factors on the corrosion behaviour of polyester coated systems--A EIS study. Progress in Organic Coatings. 2007, vol. 59, núm. 3, pp. 206-213.
EDAVAN, R. P. y KOPINSKI, R. Corrosion resistance of painted zinc alloy coated steels. Corrosion Sciences. 2009, núm. 51, pp. 2429-2442.
EPELBOIN, I. y KEDDAM, M. Faradaic impedances: diffusion impedance and reaction impedance. Journal of the Electrochemical Society. 1970, núm. 117, pp. 1052-1056.
EPELBOIN, I.; KEDDAM, M. y TAKENOUTI, H. Use of impedance measurements for the determination of the instant rate of metal corrosion. Journal of Applied Electrochemistry. 1972, núm. 2, pp. 71-79.
FEDRIZZI, L.; BERGO, A. y FANICCHIA, M. Evaluation of accelerated aging procedures of painted galvanised steels by EIS. Electrochimica Acta. 2006, vol. 51, núms. 8-9, pp. 1864-1872.
FLOYD, F. L.; AVUDAIAPPAN, S.; GIBSON, J.; MEHTA, B.; SMITH, P.; PROVDER, T. y ESCARSEGA, J. Using electrochemical impedance spectroscopy to predict the corrosión resistance of unexposed coated metal panels. Progress in Organic Coatings. 2009, núm. 66, pp. 8-34.
GONZÁLEZ-GARCÍA, Y.; GONZÁLEZ, S. y SOUTO, R. M. Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corrosion Sciences. 2007, núm. 49, pp. 3514-3526.
HATTORI, M.; NISHIKATA, A. y TSURU, T. EIS study on degradation of polymer-coated steel under ultraviolet radiation. Corrosion Science. 2010, núm. 52, pp. 2080-2087.
HINDERLITER, B. R.; CROLL, S. G.; TALLMAN, D. E.; SU, Q. y BIERWAGEN, G. P. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties. Electrochimica Acta. 2006, vol. 51, núm. 21, pp. 4505-4515.
HOSSEINI, M.; ASHASSI-SORKHABI, H. y GHIASVAND, H. A. Y. The mode of action of chromate inhibitor in epoxy primer on galvanized steel. Journal of Rare Earths. 2007, núm. 25, pp. 537-543.
HOWARD, R. L.; LYON, S. B. y SCANTLEBURY, J. D. Accelerated tests for the prediction of cut-edge corrosion of coil-coated architectural cladding. Part I: cyclic cabinet salt spray. Progress in Organic Coatings. 2001, núm. 37, pp. 91-98.
HU, J. M.; ZHANG, J. Q. y CAO, C. N. Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy. Progress in Organic Coatings. 2003, núm. 46, pp. 273.
JACQUES, L. F. E. Accelerated and outdoor/natural exposure testing of coatings. Progress in Polymer Science. 2000, núm. 25, pp. 1337-1362.
JOHNSON, B. W. y MCINTYRE, R. Analysis of test methods for UV durability predictions of polymer coatings. Progress in Organic Coatings. 1996, núm. 27, pp. 95-106.
KAMRUNNAHAR, M. y URQUIDI-MACDONALD, M. Prediction of corrosion behavior using neural network as a data mining tool. Corrosion Science. 2010, núm. 52, pp. 669-677.
KEDDAM, M.; MATTOS, O. y TAKENOUD, H. Reaction Model for Iron Dissolution Studied by Electrode Impedance. Journal of the Electrochemical Society. 1981, núm. 128, pp. 257-274.
KERN, P.; BANER, L. y LANGE, J. Electrochemical impedance spectroscopy as a tool for investigating the quality and performance of coated food cans. Journal of Coatings Technology. 1999, núm. 71, p. 67.
LENGYEL, B.; MESZAROS, L.; MESZAROS, G.; FEKETE, E.; JANASZIK, F. y SZENES, I. Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corrosion Sciences. 2007, núm. 49, pp. 11-14.
MANSFELD, F. Models for the impedance behavior of protective coatings and cases of localized corrosion. Electrochimica Acta. 1993, núm. 38, pp. 1891-1897.
MARTIN, J. W.; NGUYEN, T.; BYRD, E.; DICKENS, B. y EMBREE, N. Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus. Polymer Degradation and Stability. 2002, núm. 75, pp. 193-210.
MEEKER, W. Q.; ESCOBAR, L. A. y CHAN, V. Using accelerated tests to predict service life in highly-variable environments [documento en línea]. 2000. [citado 26-03-2011].
OCHS, H.; VOGELSANG, J. y MEYER, G. Enhanced surface roughness of organic coatings due to UV-degradation, pp. an unknown source of EIS-artifacts. Progress in Organic Coatings. 2003, núm. 46, pp. 182-190.
ÖZCAN, M.; DEHRI, I. y ERBIL, M. EIS study of the effect of high levels of SO2 on the corrosion of polyester-coated galvanised steel at different relative humidities. Progress in Organic Coatings. 2002, vol. 44, núm. 4, pp. 279-285.
PIMENTE REALA, L.; PEREIRA ROCHA, A. y GARDETTE, J. Artificial accelerated weathering of poly, núm. vinyl chloride) for outdoor applications, pp. the evolution of the mechanical and molecular properties. Polymer Degradation and Stability. 2003, núm. 82, pp. 235-243.
PRINCETON. Basics of electrochemical impedance spectroscopy impedance, application note AC-1. [web en línea]. 1989. [consulta: 23-09-2010].
RAMMELT, U. y REINHARD, G. Application of electrochemical impedance spectroscopy (EIS) for characterizing the corrosion-protective performance of organic coatings on metals. Progress in Organic Coatings. 1992, núm. 21, pp. 205-226.
SATHIYANARAYANAN, S.; AZIM, S. S. y VENKATACHARI, G. Corrosion protection of galvanized iron by polyaniline containing wash primer coating. Progress in Organic Coatings. 2009, núm. 65, pp. 152-157.
SHREIR, L. L.; JARMAN, R. A.; BURSTEIN, G. T. Corrosion. 3 ed. Vol. 1-2. New York: Elsevier 1994.
SILVERMAN, D. C. Primer on the AC impedance technique, in electrochemical techniques for corrosión engineering. Houston: NACE, 1986.
TIEMENS, H. J. y HOEFLAAK, M. Improved prediction of durability of coated metal sheet by artificial testing. ECCA Autumn Congress, 2001, Brussels, Belgium.
UHLIG, H. H. Corrosion and corrosion control. New York: John Wiley and Sons; 1971.
VERA, R.; ROSALES, B. M. y TAPIA, C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere. Corrosion Science. 2003, núm. 45, pp. 321-337.
YANG, X. y DING, X. Prediction of outdoor weathering performance of polypropylene filaments by accelerated weathering tests. Geotextiles and Geomembranes. 2006, núm. 24, pp. 103-109.
YANG, X. F.; LI, J.; CROLL, S. G.; TALLMAN, D. E. y BIERWAGEN, G. P. Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures. Polymer Degradation and Stability. 2003, núm. 80, pp. 51-58.
YANG, X. F.; TALLMAN, D. E.; BIERWAGEN, G. P.; CROLL, S. G. y ROHLIKA, S. Blistering and degradation of polyurethane coatings under different accelerated weathering tests. Polymer Degradation and Stability. 2009, núm. 77, pp. 103-109.
ZAPPONI, M.; PÉREZ, T.; RAMOS, C. y SARAGOVI, C. Prohesion and outdoors tests on corrosion products developed over painted galvanized steel sheets with and without Cr(VI) species. Corrosion Science. 2007, núm. 47, pp. 923-936.
ZIN, I. M.; HOWARD, R. L.; BADGER, S. J.; SCANTLEBURY, J. D. y LYON, S. B. The mode of action of chromate inhibitor in epoxy primer on galvanized steel. Progress in Organic Coatings. 1998, núm. 33, pp. 203-210.
How to Cite
Bedoya-Lora, F., Calderón-Gutiérrez, J., Bermúdez-Castañeda, Ángela, Castaño-Gonzalez, J., Echeverría-Echeverría, F., & Maya-Montoya, J. (2011). Performance assessment of organic coatings through accelerated tests and electrochemical impedance spectroscop. Ingenieria Y Universidad, 15(1), 245–268.

Most read articles by the same author(s)