Published Mar 16, 2011



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Andrés Arrieta-Burgos, BSc

Francisco Cadavid-Sierra, PhD

Andrés Amell-Arrieta, MSc

##plugins.themes.bootstrap3.article.details##

Abstract

Simulations of combustion furnaces equipped with radiant burners are usually done assuming the presence of fully developed burning gases in the burners’ outlet. This assumption minimizes the computational cost of simulating hundreds of burners. However, it involves simulating a furnace where the development of combustion reactions is not taken into account, and the interaction of the geometry of the burners with the flow and temperature profiles inside the firebox is not considered. This work seeks to support the above simplification by comparing its impact to a methodology that gets closer to the actual operation of a furnace with hundreds of burners and makes it posible to model the combustion process. Results show that the simulations differ in wall temperatures, the power that reaches the load and the efficiency of firebox in: 1 K, 0.07 MW, and 0.3%.

Keywords

Furnaces-simulation methods, heattransmission, mathematical modelsHornos-métodos de simulación, transmisión del calor, modelos matemáticos

References
HABIBI, A.; MERCI, B, y HEYNDERICKX, G. Impact of radiation models in CFD simulations of steam cracking furnaces. Computers and Chemical Engineering. 2007, núm. 31, pp. 1389-1406.
LAN, X.; GAO, J.; XU, C. y ZHANG, H. Numerical simulation of transfer and reaction processes in ethylene furnaces. Chemical Engineering Research and Design. 2007, vol. 85, núm. A12, pp. 1565-1579.
MAGNUSSEN, B. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. Nineteeth AIAA Meeting. St. Louis, 1981, pp. 1-7.
MODEST, M. Radiative heat transfer. 2a ed. Upper Sadle River, N.J.: Prentice Hall, 2003.
PATANKAR, S. Numerical heat transfer and fluid flow. Washington: Hemisphere, 1980.
SAZHIN, S.; SAZHINA, E.; FALTSI-SARAVELOU, O. y WILD, P. The P-1 model for thermal radiation transfer: advantages and limitations. Fuel. 1996, vol. 75, núm. 3, pp. 289-294.
SPALDING, D. Development of the eddy-break-up model of turbulent combustion. The Combustion Institute. 16th Symposium (International) on Combustion, 1976.
SPALDING, D. Mixing and chemical reaction in steady confined turbulent flames. The Combustion Institute. Thirteenth Symposium (International) on Combustion, Pittsburgh, 1971.
STEFANIDIS, G.; MERCI, B.; HEYNDERICKX, G. y MARIN, G. CFD simulations of steam cracking furnaces using detailed combustion mechanisms. Computers and Chemical Engineering. 2006, vol. 30, núm. 4, pp. 635-649.
STEFANIDIS, G.; VAN GEEM, K.; HEYNDERICKX, G.; MARIN, G. Evaluation of highemissivity coatings in steam cracking furnaces using a non-grey gas radiation model. Chemical Engineering Journal. 2008, núm. 137, pp. 411-421.
VAN LEER, B. Towards the ultimate conservative difference scheme. V. A second order sequel to godunov’s method. Journal of Computational Physics. 1979, núm. 32, pp. 101-136.
WESTBROOK, C. y DRYER, F. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology. 1981, vol. 27, núms. 1-2, pp. 31-43.
YEOH, G. y YUEN, K. Computational fluids dynamics in fire engineering. Theory, modelling and practice. s. l.: Elsevier, 2009.
How to Cite
Arrieta-Burgos, A., Cadavid-Sierra, F., & Amell-Arrieta, A. (2011). Numerical simulation of combustion furnaces equipped with radiant wall burners. Ingenieria Y Universidad, 15(1), 9–28. https://doi.org/10.11144/Javeriana.iyu15-1.snhc
Section
Articles