Published Apr 29, 2012


Google Scholar
Search GoogleScholar

Laura Milena Corredor-Rojas, MSc



The forecast zenith of oil, the environmental regulations and the price of oil have encouraged the search for new efficient and not-so-polluting energy-producing devices. Undoubtedly, fuel batteries are devices that comply with these characteristics since they are more efficient than most combustion machines and generate fewer emissions. Thanks to these advantages, the fuel batteries market has been widening its scope. This article reviews the potential market for these batteries and the challenges faced by their inventors in order to position them in the market. The article it also mentions some of the commercially available products and international activities related to their development.


Industria del petróleo y productos derivados, mercadeo de celdas de combustiblePetroleum industry and trade derivatives, fuel cells marketing

ALZATE, L. et ál. Generación de electricidad a partir de una celda de combustible microbiana tipo PEM. Interciencia [documento en línea]. 2008, vol. 33, núm. 7. .
BÁEZ, V. y RODRÍGUEZ, V. Celdas de combustible: presente, futuro y su impacto en la industria petrolera. Acta Científica Venezolana. 1999, vol. 50, núm. 1, pp. 26-33.
BALLARD [web en línea]. .
BOWER, B. et ál. Performance of an onboard fuel processor for PEM fuel cell vehicles [documento en línea]. SAE International. 2004. .
BOWERS, B. et ál. Advanced onboard fuel processor for PEM fuel cell vehicles [documento en línea]. SAE International. 2005. .
BROMBERG, L.; COHN, D. y RABINOVICH, A. Plasma reforming of methane. Energy y Fuels. 1998, vol. 12, núm. 1, pp. 11-18.
BROWN, J.; HENDRY, C. y HARBONE, P. An emerging market in fuel cells?: Residential combined heat and power in four countries. Energy Policy. 2007, vol. 35, pp. 2173-2186.
BUTLER, J. Report: 2010 Survey of Korea [documento en línea]. .
CA, D. S. y WANG, G. Direct carbon fuel cell: Fundamentals and recent developments. Journal of The Power Sources. 2007, vol. 167, núm. 2, pp. 250-257.
CANO, U. Las celdas de combustible: verdades sobre la generación de electricidad limpia y eficiente vía electroquímica. Boletín IEE. 1999, septiembre-octubre.
CHEPERY, N. et ál. Direct conversion of carbon fuels in a molten carbonate fuel cell. Journal of the Electrochemical Society. 2005, vol. 152, pp.1-29.
DE SCHAMPHELAIRE, L. et ál. microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science and Technology. 2008, vol. 42, núm, 8, pp. 3053-3058.
DEPARTMENT OF TRADE AND INDUSTRY. Fuel cells niche market: applications and design studies [document en línea]. 2000. pp 1-1085. .
DEWAN, A.; BEYENAL, H. y LEWANDOWSKI, Z. Scaling up microbial fuel cells. Environmental Science and Technology. 2008, vol. 42, núm. 20, pp. 7643-7648.
DILLON, R. et ál. International activities in DMFC RyD: status of technologies and potencial applications. Journal of the Power Sources. 2004, vol. 127, núm. 1, pp. 112-126.
DOHLE, H. et ál. Process engineering of the direct metanol fuel cell. Journal of the Power Sources. 2000, vol. 86, núm. 1, pp. 469-447.
DOMÍNGUEZ, J. Celdas de combustible. Anales de Mecánica y Electricidad. 2002, mayo-junio.
DYER, C. Fuel cells for portable applications. Journal of Power Sources. 2002, vol. 106, pp. 31-34.
FUEL CELLS 2000. Technology update [documento en línea]. 2000. .
FUEL CELLS [web en línea]. .
FUELCELL ENERGY [web en línea]. .
HANDSCHIN, E. Memorias curso “Celdas de Combustible”. Piedecuesta: Instituto de Investigaciones Guatiguará-UIS, 1999.
HYDROGENICS [web en línea]. .
IDATECH [web en línea]. .
JADOO POWER [web en línea]. .
KLEIJN, R. y VAN DER VOET, E. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration. Renewable and Sustainable Energy Reviews. 2010, vol. 14, pp. 2784-2795.
LLOYD, A. The future of fuel cells. Scientific American. 1999, July, pp 64-69.
LOGAN, B. y REGAN, J. Microbial fuel cells—challenges and applications. Environmental Science and Technology. 2006, vol. 40, núm. 17, pp 5172-5180.
LURGI [web en línea]. .
META, V. y COOPER, J. Review and analysis of PEM fuel cell design and manufacturing. Journal of the Power Sources. 2003, vol. 114, pp. 32-53.
MITLITSKY, F.; MYERS, B. y WEISBERG, A. Regenerative fuel cell systems. Energy y Fuels. 1998, vol. 12, pp. 56-71.
MUSIOLIK, J. y MARKARD, J. Creating and shaping innovation systems: Formal networks in the innovation system for stationary fuel cells in Germany. Energy Policy. 2011, vol. 39, pp.1909-1922.
NUVERA [web en línea]. .
PALO, D.; DAGLE, R. y HOLLADAY, J. Methanol steam reforming for hydrogen production. Chemical Reviews. 2007, vol. 107, pp. 3992-4021.
PAPADIAS, D.; LEE, S. y CHMIELEWSKI, D. Autothermal reforming of gasoline for fuel cell applications: a transient reactor model. Industrial and Engineering Chemical Research. 2006, vol. 45, pp. 5841-5858.
QI, A.; PEPPLEY, B. y KUNAL, K. Integrated fuel processors for fuel cell application: A review. Fuel Processing Technology. 2007, vol. 88, pp. 3-22.
RELI ON, Inc. [web en línea] .
SCHMERSAHL, R.; MUMME, J. y SCHOLZ, V. Farm-based biogas production, processing, and use in Polymer Electrolyte Membrane (PEM) fuel cells. Industrial and Engineering Chemical Research. 2007, vol. 46, pp. 8946-8950.
SEYMOUR, E.; BORGES, F. y FERNANDES, R. Indicators of European public research in Hydrogen and fuel cells-An input-output analysis. International Journal of Hydrogen Energy. 2007, vol. 32, pp. 3212-3222.
SIDDLE, A.; POINTON, R.; JUDD, R. y JONES, S. Fuel processing for Fuel Cells-A status review and assessment of prospects [documento en línea]. 2003, pp. 1-124. .
SUNDMACHER, K. Fuel cell engineering: toward the design of efficient electrochemical power plants. Industrial and Engineering Chemical Research. 2010, vol. 49, pp. 10159-10182.
TAYLOR, C.; HOWARD, B. y MYERS, C. Methanol conversion for the production of hydrogen. Industrial and Engineering Chemical Research. 2007, vol. 46, pp. 8906-8909.
TELEDYNE ENERGY SYSTEMS, Inc. [web en línea]. .
U.S. DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY. Fuel cell handbook. 7a ed. s. l., 2004.
Ultracell [web en línea]. .
UOP [web en línea]. .
US Fuel Cell Council-Industry Overview 2010 [web en línea]. .
UTC POWER [web en línea]. .
VEZIROGLU, A. y MACARIO, R. Fuel cell vehicles: State of the art with economic and environmental concerns. International Journal of Hydrogen Energy. 2011, vol. 36, pp. 25-43.
WANG, J.; CHIANG, W. y SHU, J. The prospects—fuel cell motorcycle in Taiwan. Journal of Power Sources. 2000, vol. 86, núms. 1-2, pp. 151-157.
WINTER, M. y BRODD, R. What are batteries, fuel cells, and supercapacitors? Chemical Reviews. 2004, vol. 104, pp. 4245-4269.
XU, Z. et ál. LaCrO3-VOx-YSZ anode catalyst for solid oxide fuel cell using impure hydrogen. The Journal of Physical Chemistry C. 2007, vol. 111, pp. 16679-16685.
XUAN, J.; LEUNG, M.; LEUNG, D. y NI, M. A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews. 2009, vol. 13, pp. 1301-1313.
ZHANG, F. y COOKE, P. Hydrogen and fuel cell development in china: a review. European Planning Studies. 2010, vol. 18, núm. 7, pp.1153-1168.
How to Cite
Corredor-Rojas, L. M. (2012). Fuel batteries and their development. Ingenieria Y Universidad, 16(1), 247.