Published Dec 14, 2017


Google Scholar
Search GoogleScholar

Jimy Oblitas-Cruz, MSc

Erika Rojas-Gutierrez, MSc



Objectives: The aim of this research was to optimize the parameters for the vacuum impregnation of aloe vera into dried yacon (Smallanthus sonchifolius Poepp. & Endl.) flakes. Methodology: A surface response methodology was use to evaluate the product optimization. Matrix engineering, using a vacuum impregnation technique, was employed to incorporate components with physiological activity into the pores present in the yacon flakes. An orange pulp yacon was used as the starting material and Aloe Gold Seal-Natural 200X (AGS) was used for the impregnate solution. A solution of 15 g/100 ml Natural aloe 200X Gold Seal-yacon was used to impregnate yacon samples measuring 40 mm in diameter and 5 mm thick. The results show an average impregnation of 0.0721 m3 of solution/ m3 fresh fruit and an effective porosity of 18.97%; the amount of aloe vera incorporated in the food matrix was between 22.5 and 54.6 mg/100g sample. Optimized parameters were identified as 451.777 mbar and 22.0711 minutes. Results: From the results, it is concluded that yacon is an excellent raw material for vacuum impregnation of  aloe vera.


Volumetric fraction, mass fraction, impregnation solution, physiologically active components, porous structures.Fracción volumétrica, fracción másica, solución de impregnación, componentes fisiológicamente activos, estructuras porosas

[1] L. Day, R.B. Seymour, K.F. Pitts, I. Konczak, and L. Lundin, “Incorporation of functional ingredients into foods,” Trends Food Sci. Tech. vol. 20, no. 9, pp. 388-395. Sep. 2009. .05.002
[2] Q. Shi, Y. Zheng, and Y. Zhao, “Thermal transition and state diagram of yacon dried by combined heat pump and microwave method,” J.Therm. Anal. Calorim., vol. 119, no. 1, pp. 727-735. Jan. 2015. net/archive/v5i1/NOV153074.pdf
[3] H. Satoh, ;- M. T. A. Nguyen, A. Kudoh, and T. Watanabe, “Yacon diet (Smallanthus sonchifolius, Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats,” Nutr. Diabetes, vol. 3, no. 5, pp. 1-6. May 2013.
[4] C. Serra-Barcellona, et al., “Smallanthus macroscyphus: a new source of antidiabetic compounds,” Chem.-Biol Interac., vol. 209, pp. 35-47. Feb 2014.
[5] S. Sousa, et al., “Antioxidant properties of sterilized yacon (Smallanthus sonchifolius) tuber flour,” Food Chem., vol. 188, pp. 504-509. Dec. 2015.
[6] N. A. Moura, et al., “Protective effects of yacon (Smallanthus sonchifolius) intake on experimental colon carcinogenesis,” Food Chem. Toxicol., vol. 50, no. 8, pp. 2902- 2910. Aug. 2012.
[7] X. Guo, and N. Mei, “Aloe vera: A review of toxicity and adverse clinical effects,” J. Environ. Sci. Health. C. Environ. Carcinog. Etocoxicol Rev., vol. 34, no. 2 pp. 77-96. Apr. 2016.
[8] R. Pothuraju, R. K. Sharma, S. K. Onteru, S. Singh, and S. A. Hussain “Hypoglycemic and hypolipidemic effects of Aloe vera extract preparations: A review,” Phytother. Res., vol. 30, no. 2, pp. 200-207. Feb. 2016. doi: 10.1002/ptr.5532.
[9] A. Femenia, E. S. Sánchez, S. Simal, and C. Rosselló, “Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues”. Carb. Pol., vol. 39, no. 2, pp. 109-117. Jun. 1999.
[10] J. Chokboribal, W. Tachaboonyakiat, P. Sangvanich, V. Ruangpornvisuti, S. Jettanacheawchankit, and P. Thunyakitpisal, “Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera,” Carb. Pol., vol. 133, pp. 556-566. Nov. 2015.
[11] S. Kumar, and A. B. Tiku, “Immunomodulatory potential of acemannan (polysaccharide from Aloe vera) against radiation induced mortality in Swiss albino mice,” Food Agr. Immunol., vol. 27, no. 1, pp. 72-86. 2016.
[12] J. Moreno, et al., “Effect of pulsed-vacuum and ohmic heating on the osmodehydration kinetics, physical properties and microstructure of apples (cv. Granny Smith),” Innov. Food Sci. Emerg. Technol., vol. 12, no. 4, pp. 562-568. Oct. 2011.
[13] E. Radziejewska-Kubzdela, R. Biegańska-Marecik, and M. Kidoń, “Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products-a review,” Int. J. Mol. Sci., vol. 15, no. 9, pp. 16577-16610. 2014. doi:10.3390/ijms150916577
[14] A. Derossi, T. De Pilli, M. P. La Penna, and C. Severini, “pH reduction and vegetable tissue structure changes of zucchini slices during pulsed vacuum acidification,” LWT Food Sci. Technol., vol. 44, no. 9, pp. 1901-1907. Nov. 2011.
[15] N. Betoret, et al., “Development of probiotic-enriched dried fruits by vacuum impregnation,” J. Food Eng., vol. 56, no. 2-3, pp. 273-277. Feb. 2003.
[16] K. Hironaka, et al., “Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation”. Food Chem., vol. 127, no. 3, pp. 1114-1118. Aug. 2011.
[17] M. Jeon, and Y. Zhao, “Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples,” Int. J. Food Sci. Nutr., vol. 56, no. 3, pp. 165-176. 2005.
[18] B. Schulze, S. Peth, E. M. Hubbermann, and K. Schwarz, “The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis,” J. Food Eng., vol. 109, no. 3, pp. 380-387. Apr. 2012.
[19] P. Comandini, G. Blanda, H. Mújica Paz, A. Valdez Fragoso, and T. Gallina Toschi, “Impregnation techniques for aroma enrichment of apple sticks: a preliminary study,”Food Bioprocess Technol., vol. 3, no. 6, pp. 861-866. Dec. 2010.
[20] A. Guillemin, P. Degraeve, C. Noël, and R. Saurel, “Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes (var. Granny Smith),” J. Food Eng., vol. 86, no. 4, pp. 475-483. Jun. 2008.
[21] P. Fito, A. Andrés, A. Chiralt, and P. Pardo, “Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems,” J. Food Eng., vol. 27, no. 3, pp. 229-240. 1996.
[22] H. Mújica-Paz, A. Valdez-Fragoso, A. López-Malo, E. Palou, and J. Welti-Chanes, “Impregnation properties of some fruits at vacuum pressure,” J. Food Eng., vol. 56, no. 4, pp. 307-314. Mar. 2003.
[23] H. Mújica-Paz, A. Valdez-Fragoso, A. López-Malo, E. Palou, and J. Welti-Chanes, “Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration,” J. Food Eng., vol. 57, no. 4, pp. 305-314. May. 2003.
[24] AOAC, Official Methods of Analysis of AOAC International Agricultural Chemists, 16th ed., vol: 1–2, 2005.
[25] M. Cortés, F. Guardiola, and R. Pacheco, “Aplicación de la ingeniería de matrices en la fortificación de mango (var. Tommy Atkins) con calico,” Dyna, vol. 74, no. 153, pp. 19-26. Nov. 2007.
[26] P. Fito, “Modelling of vacuum osmotic dehydration of food,”. J. Food Eng., vol. 22, no. 1-4, pp. 313-328. 1994.
[27] P. Fito, and R. Pastor, “Non-diffusional mechanisms occurring during vacuum osmotic dehydration,”. J. Food Eng., vol. 21, no. 4, pp. 513-519. 1994.
[28] A. Anzaldúa La evaluación de los alimentos en la teoría y en la práctica. Zaragoza: Acribia. Ballús C: Psicobiología. Herder: Barcelona. 1994
[29] T. Derossi, T. De Pilli, and C. Severini, The Application of Vacuum Impregnation Techniques in Food Industry” in Scientific, Health and Social Aspects of the Food Industry, 2nd ed. Buenos Aires: Ed. Univ. de Bs As, 2012.
[30] H. Mújica, A. Valdez, A. López, E. Pallou, J. Welti, “Impregnation properties of some fruits at vacuum pressure.” J. Food Eng., vol 56, pp. 307-314. 2002.
[31] P. Fito, “Complejidad y funcionalidad de los sistemas de ingeniería de alimentos: La Ingeniería de matrices en el desarrollo de alimentos frescos funcionales (‘Complexity and functionality of food engineering systems: matrix engineering in the development of fresh functional foods’); Departamento de Tecnología de alimentos, Universidad Politécnica de Valencia, Spain. 2003
[32] A. Gilibert, “Desarrollo de alimentos funcionales. Incorporación de calcio y zinc por procesos de impregnación a vacío de jarabes de sacarosa,” MSc thesis, Univ. de las Américas, Puebla, Mexico, 2002.
[33] P. Fito, A. Andrés, A. Chiralt and P. Pardo, “Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems,” J. Food Eng., vol. 27, pp. 229-240. 1996.
[34] M. Mateus, et al., “Vacuum impregnation and drying of calcium-fortified pineapple snacks,” LWT-Food Sci. Technol., vol. 72, pp. 501-509. 2016.
[35] A. Paez, M. G. Gebre, M. E. González, and T. J. Tschaplinski, “Growth, soluble carbohydrates, and aloin concentration of Aloe vera plants exposed to three irradiance levels,” Environ. Exp. Bot., vol. 44, no. 2, pp. 133-139. Oct. 2000.
[36] M. P. Ruiz, “Aplicación de la ingeniería de matrices en el desarrollo de hongos comestibles (Pleorotus Ostreatus) Mínimamente procesados, fortificados con vitaminas C, E y minerales calcio y zinc,” MSc Thesis, Fac. Ciencias Agropecuarias, UNAL, Medellín, 2009.
[37] P. Fito, et al., “Vacuum impregnation for development of new dehydrated products,” J. Food Eng., vol. 49, no. 4, pp. 297-302. Sep. 2001.
[38] L. Neri, et al., “Use of vacuum impregnation for the production of high quality fresh-like apple products,” J. Food Eng., vol. 179, pp. 98-108. Jun. 2016.
[39] J. Seminario, M- Valderrama, and I. Manrique, El Yacón: fundamentos para el aprovechamiento de un recurso promisorio. Lima, Perú: Centro Internal. de la Papa (CIP), Univ. Nal. de Cajamarca, Agencia Suiza para el Desarrollo y la Coop. (COSUDE), 2003, 60 pp.
[40] J. Yimei, Z. Guodong, J. Jicheng, “Preliminary evaluation: the effects of Aloe ferox Miller and Aloe arborescens Miller on wound healing,”J. Ethnopharmacol., vol. 120, no.2, pp.181-189. Nov. 2008. doi: 10.1016/j.jep.2008.08.008
How to Cite
Oblitas-Cruz, J., & Rojas-Gutierrez, E. (2017). Optimizing the incorporation of aloe vera in yacon (smallanthus sonchifolius poepp. & endl.) Through vacuum impregnation using response surface. Ingenieria Y Universidad, 22(1), 117–136.
Bioengineering and chemical engineering