Published Apr 17, 2013



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Saray Yurley Acuña-Parada, BSc

Esteban Madiedo-Bautista, BSc

Nestor Raúl Ortiz-Pimiento, BSc

##plugins.themes.bootstrap3.article.details##

Abstract

This paper proposes a new mathematical model for the scheduling of employees. The problem consistsin finding and optimal scheduling method that will balance the workload and avoid dissatisfaction and low performance problems, due to work overload or sudden changes in the workload. We will employ hypothesis testing based on the normalized Bernoulli trial, in order to do a statistical comparison between the tasks assigned by the proposed model with those assigned by the Zhirong Liang, Songs han Guo, Yanzhi Li and Andrew Lim model, which minimizes the difference between minimum and maximum workloads assigned. As a result we observed that the assignations generated by the models do not match in more than 90% of the cases. Further more,we found that the values of the object functions, which were gathered from solutions provided by the current model, were never better than those obtained by this paper proposes.

Keywords

Scheduling problem, workload balance problem, project, project assignation, binary linear programmingProblema de asignación, problema de balance de cargas, proyecto, asignación de proyectos, programación lineal entera binaria

References
ACUÑA, S. Y. y MADIEDO, E. Balance de carga de trabajo de empleados en asignación de proyectos. Trabajo de grado Ingeniería Industrial. Bucaramanga: Universidad Industrial de Santander, 2012.
DÍAZ, J. A. y FERNÁNDEZ, E. A tabu seach heuristic for the generalized assignment problem. European Journal of Operational Research. 2001, vol. 132, pp. 22-38.
FRANZ, L. S. y MILLER, J. L. Scheduling medical residents to rotations: Solving the largescale multiperiod staff assignment problem. Operations Research. 1993, vol. 41, núm. 2, pp. 269-279.
LARUSIC, J. y PINNEN, A. P. The balanced traveling salesman problem. Computers & Operations Research. 2011, vol. 38, pp. 868-875.
LIANG, Z.; GUO, S.; LI, Y. y LIM, A. Balancing workload in project assignment. Advances in Artificial Intelligence. 2009, vol. 5866, pp. 91-100.
MARTELLO, S.; PULLEYBLANK, W. R.; TOTH, P. y DE WERRA, D. Balanced optimization problems. Operations Research Letters. 1984, vol. 3 núm. 5, pp. 275-278.
MATEUS MAHIQUES, J.; SIRVENT PRADES, R. y SAGASTA PELLICER, S. Manual de control estadístico de calidad: teoría y aplicaciones. Valencia: Universidad Jaume, 2006.
PENTICO, D. W. Assignment problems: A golden anniversary survey. European Journal of Operational Research. 2007, vol. 176, núm. 2, pp. 774-793.
PRAT BARTES, A.; TORT-MORTORELL LLABRÉS, X.; GRIMA CINTAS, P. y POZUETA FERNÁNDEZ, L. Métodos estadísticos de control y mejora de la calidad. México: Alfaomega, 2000.
ROSS, G. T. y SOLAND, R. M. A branch and bound algorithm for the generalized assignment problem. Mathematical Programming. 1975, pp. 91-103.
TOPALOGLU, S. y OZKARAHAN, I. A constraint programming-based solution approach for medical resident scheduling problems. Computers & Operations Research. 2011, vol. 38, pp. 246-255.
How to Cite
Acuña-Parada, S. Y., Madiedo-Bautista, E., & Ortiz-Pimiento, N. R. (2013). A binary linear programming model for workload balance in scheduling. Ingenieria Y Universidad, 17(1), 167-182. https://doi.org/10.11144/Javeriana.iyu17-1.blpm
Section
Articles